期刊文献+

图像压缩感知的目标跟踪多特征提取算法 被引量:4

Multi-Feature Extraction Algorithm Based on Image Compressed Sensing for Target Tracking
在线阅读 下载PDF
导出
摘要 为了提高图像压缩跟踪过程中的目标跟踪性能,论文提出了一种具有随机生成多个特征的目标跟踪算法,通过划分子区域来确定随机生成的多个不同的图像特征进而实现目标跟踪。在每次计算候选位置的最高分类器得分后,结合Bhattacharyya系数来选择最优跟踪结果作为最终目标位置。减少了由图像不良特征确定目标位置的概率,有效地克服了诸如遮挡、形变或类似背景的影响。实验结果表明:相比单个特征提取,两个特征共同提取的中心位置误差平均减少了18.86%,边界框重叠率平均提升了14.14%,成功率平均提升了20.72%,且所提出的跟踪算法的计算速度与图像尺寸有关。 In order to improve the performance of target tracking in the process of image compression tracking, this paper proposes a target tracking algorithm with randomly generated multiple features, which determines randomly generated multiple image features and different image features by dividing sub-regions to achieve target tracking. After calculating the highest classifier score for each candidate location, the Bhattacharyya coefficient is used to select the optimal tracking result as the final target location. It reduces the probability of locating the target by bad image features, and effectively overcomes the influence of occlusion, deformation or similar background. The experimental results show that, compared with single feature extraction, the center position error of the two features is reduced by 18.86%, the overlap rate of boundary box is increased by 14.14%, and the success rate is increased by 20.72%. The calculation speed of the proposed tracking algorithm is related to the size of the image.
作者 徐华伟 颜晶晶 XU Huawei;YAN Jingjing(Taizhou Vocational & Technical College, Taizhou 318000)
出处 《计算机与数字工程》 2019年第9期2170-2175,共6页 Computer & Digital Engineering
基金 国家自然科学基金项目(编号:61374148) 浙江省教育厅项目“基于大数据分析的国地税异常企业监控平台的研发”(编号:FG2017141)资助
关键词 目标跟踪 特征提取 BHATTACHARYYA系数 图像处理 target tracking feature extraction Bhattacharyya coefficient image processing
作者简介 徐华伟,男,硕士,讲师,研究方向:算法优化、大数据研究、图像处理;颜晶晶,女,博士,研究方向:算法优化、无线传感器网络。
  • 相关文献

参考文献8

二级参考文献53

  • 1于明.基于嵌入式系统的运动目标跟踪视频监控系统的设计[J].自动化与仪器仪表,2015(12):17-19. 被引量:6
  • 2邢春晓,高凤荣,战思南,周立柱.适应用户兴趣变化的协同过滤推荐算法[J].计算机研究与发展,2007,44(2):296-301. 被引量:148
  • 3Waxinann M J, Drunnnond O E. A bibliography of cluster (group) tracking. In: Proceedings of the 2004 International Conference on Signal and Data Processing of Small Targets. Orlando, USA: SPIE, 2004. 551-560.
  • 4Mahler R P S. Statistical Multisource-Multitarget Informa- tion Fusion. Boston: Artech House, 2007.
  • 5Helbing D. Traffic and related self-driven many-particle sys- tems. Reviews of3lodern Physics, 2002, 73(4): 1067-1141.
  • 6Pang S K, Li J, Godsill S. Detection and tracking of coor- dinated groups. IEEE Transactions on Aerospace and Elec- tronic Systems, 2011, 47"(1): 472-501.
  • 7Clark D, Godsill S. Group target tracking with the Gaussian mixture probability hypothesis density filter. In: Proceed- ings of the 3rd IEEE International Conference on Intelligent Sensors, Sensor Networks and Information Processing. Mel- bourne, AU: IEEE, 2007. 149-154.
  • 8Koch J W. Bayesian approach to extended object and clus- ter tracking using random matrices. IEEE Transactions on Aerospace ald Electronic Systems, 2008, 44(3): 1042-1059.
  • 9Gning A, Mihaylova L, Maskell S, Pang S K, Godsill S. Group object structure and state estimation with evolving networks and Monte Carlo methods. IEEE Transactions on Signal Processing, 2011, 59(4): 1383-1395.
  • 10Gning A, Ristic B, Mihaylova L. Bernoulli particle/box- particle filters for detection and tracking in the presence of triple mea.surement uncertainty. IEEE Transactions on Signal Processing, 2012, 60(5): 2138-2151.

共引文献46

同被引文献32

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部