期刊文献+

Simulation of alumina dissolution and temperature response under different feeding quantities in aluminum reduction cell 被引量:2

铝电解槽不同投料量下氧化铝溶解的模拟及其温度响应(英文)
在线阅读 下载PDF
导出
摘要 In the feeding process of aluminum electrolytic, feeding quantity of alumina affects eventually dissolved quantity at the end of a feeding cycle. Based on the OpenFOAM platform, dissolution model coupled with heat and mass transfer was established. Applying the Rosin-Rammler function, alumina particle size distribution under different feeding quantities was obtained. The temperature response of electrolyte after feeding was included and calculated, and the dissolution processes of alumina with different feeding quantities (0.6, 0.8, 1.0, 1.2, 1.4, 1.6 kg) after feeding were simulated in 300 kA aluminum reduction cell. The results show that with the increase of feeding quantity, accumulated mass fraction of dissolved alumina decreases, and the time required for the rapid dissolution stage extends. When the feeding quantity is 0.6 kg and 1.2 kg, it takes the shortest time for the electrolyte temperature dropping before rebounding back. With the increase of feeding quantity, the dissolution rate in the rapid dissolution stage increases at first and then decreases gradually. The most suitable feeding quantity is 1.2 kg. The fitting equation of alumina dissolution curve under different feeding quantities is obtained, which can be used to evaluate the alumina dissolution and guide the feeding quantity and feeding cycle. 在铝电解下料过程中,氧化铝下料量影响一个下料周期结束后氧化铝颗粒的最终溶解量。本文基于OpenFOAM 计算平台,开发了铝电解槽中氧化铝颗粒传热、传质耦合溶解计算模型;利用Rosin-Rammler 分布函数得出氧化铝在不同下料量下的颗粒粒径分布,考虑下料区温度响应,对实际300 kA 铝电解槽中氧化铝颗粒在不同下料量下(0.6, 0.8, 1.0, 1.2, 1.4, 1.6 kg)的溶解过程进行数值模拟。模拟结果表明:随着下料量的增加,氧化铝累积溶解质量分数降低,快速溶解阶段所需的时间逐渐加长。当投料量分别为0.6 kg 和1.2 kg 时,电解质温度下降至出现回升所需时间最短。随着下料量的增加,快速溶解阶段的溶解速率先迅速上升,后逐渐减少。最佳下料量为1.2 kg。通过拟合氧化铝溶解特性曲线,得到了不同下料量下氧化铝累积溶解质量分数的拟合方程,可根据此方程评估氧化铝溶解情况及指导氧化铝的下料量和下料周期。
作者 LI Si-yun LI Mao HOU Wen-yuan LI He-song CHENG Ben-jun 李斯昀;李茂;侯文渊;李贺松;程本军(School of Energy Science and Engineering, Central South University)
出处 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第8期2119-2128,共10页 中南大学学报(英文版)
基金 Project(2010AA065201) supported by the High-Tech Research and Development Program of China Project(2018zzts157) supported by the Fundamental Research Funds for the Central Universities,China
关键词 alumina dissolution heat and mass transfer particle size distribution temperature response NUMERICAL 氧化铝溶解 传热传质 粒度分布 温度响应 数值模拟
作者简介 Corresponding author: HOU Wen-yuan, PhD Candidate;Tel:+86-18890095929;E-mail: zndxhwy@163.com;ORCID: 0000-0002- 5362-6678.
  • 相关文献

参考文献1

二级参考文献19

  • 1WELCH B J, KUSCHEL G I. Crust and alumina powder dissolution in aluminum smelting electrolytes[J]. JOM, 2007, 59(5): 50-54.
  • 2HAVERKAMP R G, WELCH B J. Modelling the dissolution of alumina powder in cryolite[J]. Chemical Engineering and Processing, 1998, 37(6): 177-187.
  • 3BEREZIN A I, ISAEVA L A, BELOLIPETSKY V M, PISKAZHOVA T V, SINELNIKOV V V. A model of dissolution and heating of alumina charged by point-feeding system in "virtual cell" program[C]//KVANDE H. Light Metals 2005. San Francisco CA: TMS, 2005:151-154.
  • 4LILLEBUEN B, BUGGE M, HOIE H. Alumina dissolution and current efficiency in Hall-Hdroult cells[C]//BEARNE G. Light Metals 2009. San Francisco CA: TMS, 2009: 389-394.
  • 5VASYUNINA N V, VASYUNINA I P, MIKHALEV Y G, VINOGRADOV A M. The solubility and dissolution rate of alumina in acidic cryolite aluminous melts[J]. Russian Journal of Non-ferrous Metals, 2009, 50(4): 338-342.
  • 6FENG Y Q, COOKSEY M A, SCHWARZ M P. CFD modeling of alumina mixing in aluminium reduction cells[C]//HAGNI A M. Light Metals 2010. Seattle, WA: TMS, 2010:451-456.
  • 7FENG Y Q, COOKSEY M A, SCHWARZ M P. CFD modeling of alumina mixing in aluminium reduction cells[C]//LINDSAY J Light Metals 2011. San Diego, CA: TMS, 2011: 543-548.
  • 8von KAENEL R, ANTILLE J, ROMERIO M, BESSON O. Impact of magnetohydrodynamic and bubbles driving forces on the alumina concentration in the bath of an Hall-Heroult cell[C]// BARRY S. Light Metals 2013. San Antonio: TMS, 2013: 585-590.
  • 9THOMAS H. Numerical simulation and optimization of the alumina distribution in an aluminium electrolysis pot[D]. Lausanne: Ecole Polytechnique Federale de Lausanne, 2011.
  • 10ZHAN Shui-qing, LI Mao, ZHOU Jie-min, YANG Jian-hong, ZHOU Yi-wen. A CFD-PBM coupled model predicting anodic gas size distribution in aluminum reduction cells[C]//GOHN G. Light Metals 2014. San Diego: TMS, 2014: 777-782.

共引文献13

同被引文献6

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部