期刊文献+

基于机器视觉和改进形态学边缘检测算法的钢球缺陷检测技术研究 被引量:16

Research on Steel Ball Defect Detection Technology Based on Machine Vision and Modified Morphological Edge Detection Algorithms
在线阅读 下载PDF
导出
摘要 为提高钢球表面缺陷检测的效率和准确性,设计一种基于机器视觉的钢球表面缺陷分拣系统。对钢球表面图像进行图像分割、平滑去噪和二值化预处理,获取钢球表面图像的准确信息,并采用改进的中值滤波算法去除噪声;利用小波变换和多尺度形态学融合算法进行钢球表面缺陷的边缘检测;通过该融合算法和其他算法的检测结果对比和客观数据评价,验证了本文所提算法能够有效保留图像真实细节,并满足钢球分拣系统的需求。 In order to improve the efficiency and accuracy of steel ball surface defect detection,a steel ball surface defect sorting system based on machine vision is designed.The image of steel ball surface is preprocessed,which includes image segmentation,smoothing de-drying and binarization.In the aspect of noise removal,an improved median filter algorithm is used to obtain accurate information of steel ball surface image.The edge detection of steel ball surface defects is carried out by combining wavelet transform and multi-scale morphology.The edge detection of steel ball surface defects is carried out by this method.The proposed fusion algorithm is compared with other algorithms and the objective data evaluation proves that the proposed algorithm can effectively retain the real details of the image and meet the needs of the steel ball sorting system.
作者 范峥 刘刚 Fan Zheng;Liu Gang
机构地区 河南工学院
出处 《工具技术》 2019年第9期102-106,共5页 Tool Engineering
基金 河南省科技计划项目(182102210261,192102210063)
关键词 多尺度形态学 小波变换 钢球表面缺陷检测 边缘检测 图像处理 multi-scale morphology wavelet transform steel ball surface defect detection edge detection image processing
作者简介 第一作者:范峥,教授,河南工学院电气工程与自动化学院,453000河南省新乡市.
  • 相关文献

参考文献1

二级参考文献17

  • 1赵彦玲,王洪运,朱宪臣,裴峒,顾玉武,向敬忠.基于UG的钢球子午线展开轮参数化设计[J].哈尔滨理工大学学报,2007,12(3):141-143. 被引量:8
  • 2Yongzhi l.in, Xianli Liu, Haiying Han, et al: Detection and recognition of steel ball surface defect based on MATLAB[J]. Key Engineering Materials, 2009, 416: 603-608.
  • 3Kakimoto Akira. detection of surface defects on steel ball bearing in production process using a capacitive sensor[J]. Measurement, 19960 17(1): 51-57.
  • 4donelson J, dicus R I: Bearing defect detection using on- boardaeceleromeler measurements[C], Washington: Proceedingsof the 2002 ASME/IEEE Joint Rail Conference, 2002. 95- 102.
  • 5Liu Deli, Liu Xianli, Hao Huanrui, el al: Study for steel bail surface quality detecting based on vision technique [C]. SPIE, 2008, 6836: 683611.
  • 6Wang Peng, Zhao Yanlin, l.iu Xianli. The key technology researeh for vision inspecting instrument of steel ball surface defect[J]. Key Engineering Materials, 2008, 392-394: 816- 820.
  • 7Wang Y W, Ding K, Jia D K, et al: Kinematic analysis of detection of steel ball surface defect based on ADAMS [ J ]. Advanced Materials Research, 2010, 102-104: 83-87.
  • 8D C Ghiglia, M D Pritt. Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Soflware[M]. New York: John Wiley and Sons, Inc, 1998.
  • 9J Kuhn, T Colomb. F Montfort, et al: Real time dual- wavelength digital holographic microscopy with a single hologram aequisition[J]. Opt Express, 2007, i5(12): 7231-7242.
  • 10方胜,李有森,李魏魏,杨维初,钟磊.基于NI Vision Assistant的机器视觉在钢球表面检测中的应用[J].仪表技术,2008(5):27-29. 被引量:16

共引文献9

同被引文献184

引证文献16

二级引证文献68

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部