期刊文献+

基于人工神经网络和粒子群优化的半导体激光器参数反向设计方法 被引量:15

Semiconductor Laser Parameter Inverse Design Method Based on Artificial Neural Network and Particle Swarm Optimization
原文传递
导出
摘要 提出一种基于人工神经网络(ANN)和粒子群优化(PSO)的半导体激光器参数反向设计方法。利用由传统数值仿真方法计算出的激光器功率样本数据来训练ANN,并用此网络预测激光器任意一组参数对应的功率谱,均方差可低至0.5 mW,用时仅0.07 s,计算速度提高了约1800倍(与相同环境下传统数值算法耗时125.57 s相比)。将此网络与PSO算法结合,可获得目标功率谱的对应参数,即实现反向设计。经计算获得的反向设计方案不唯一,从而进一步验证了半导体激光器非线性多参数的特点。相同环境下ANN结合PSO的反向算法(均方差低于0.04 mW,用时39.45 s)与传统数值反向方法(均方差为0.89 mW,用时192 h)相比,精度提高了22.25倍,速度提高了约17500倍,说明了该方法的有效性。 This study proposes a novel semiconductor laser parameter inverse design method based on artificial neural network (ANN) and particle swarm optimization (PSO) algorithm. The ANN is trained using a laser output power as sampling data, which can be calculated by applying the traditional numerical simulation method. The network can be used to predict the power spectrum of the laser for any new values of the selected parameters. The mean square error can be as low as 0.5 m W and the CPU time as low as 0.07 s, which is about 1800 times more efficient than that of the numerical algorithm, which takes 125.57 s CPU time in the same environment. To obtain the design parameters for any target power spectrum, the inverse design can be achieved by combining this network with the PSO algorithm. It is clear from the calculation that the inverse design parameters are not unique, which proves that the semiconductor laser has a nonlinear multi-parameter problem. The combination of ANN and PSO inverse algorithm (with a mean square error of less than 0.4 m W and a CPU time of 39.45 s) demonstrates greater performance based on the same condition when compared with the traditional numerical simulation inverse method (with a mean square error of less than 0.89 m W and CPU time of 192 h). The accuracy and speed of the proposed method are improved by 22.25 times and about 17500 times, respectively.
作者 冯佩 李俣 Feng Pei;Li Yu(School of Information Science and Engineering, Shandong University, Qingdao, Shandong 266237, China)
出处 《中国激光》 EI CAS CSCD 北大核心 2019年第7期1-7,共7页 Chinese Journal of Lasers
基金 国家重点研发计划(2018YFA0209000) 国家自然科学基金(11304181) 山东省自然科学基金(ZR2013FQ018)
关键词 激光器 人工神经网络 粒子群优化算法 激光器输出功率谱 反向设计 lasers artificial neural network particle swarm optimization algorithm laser output power spectrum inverse design
作者简介 李俣,E-mail:li.yu@sdu.edu.cn.
  • 相关文献

参考文献7

二级参考文献57

共引文献112

同被引文献181

引证文献15

二级引证文献69

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部