期刊文献+

基于IAPF算法的无人艇动态编队自主路径规划 被引量:2

Autonomous Path Planning of Multi-USV Dynamic Formation Based on IAPF Algorithm
在线阅读 下载PDF
导出
摘要 针对无人艇编队进行自主避障过程中的队形控制问题,提出虚拟跟随艇的Leader-Follower编队控制法.通过设置自适应编队控制策略,实现根据可航水域的宽度自适应队形控制和调整跟随角.引入无人艇的速度和加速度参量,对传统人工势场算法进行改进,以适应无人艇的动态运动.在仿真图像的基础上,采用改进的人工势场法(IAPF)进行静态障碍环境中的无人艇编队路径规划,仿真结果验证了自适应编队控制策略的有效性,实现了对障碍物的有效避碰,达到动态编队目的. Aiming at the formation control problem of unmanned craft formation in autonomous obstacle avoidance process, a Leader-Follower formation control method of virtual following craft was proposed. By setting the adaptive formation control strategy, the adaptive formation control and the adjustment of the following angle were realized according to the width of navigable waters.By introducing the velocity and acceleration parameters of unmanned craft, the traditional artificial potential field algorithm was improved to adapt to the dynamic motion of unmanned craft. Based on the simulated images, an improved artificial potential field method (IAPF) was used to plan the unmanned craft formation path in static obstacle environment. The simulation results verify the effectiveness of the adaptive formation control strategy, which can effectively prevent obstacles and achieve the goal of dynamic formation.
作者 刘梦佳 冯辉 徐海祥 LIU Mengjia;FENG Hui;XU Haixiang(School of Transportation,Wuhan University of Technology,Wuhan 430063,China;Key Laboratory of High Performance Ship Technology of Ministry of Education,Wuhan University of Technology,Wuhan 430063,China)
出处 《武汉理工大学学报(交通科学与工程版)》 2019年第4期735-740,共6页 Journal of Wuhan University of Technology(Transportation Science & Engineering)
基金 国家自然科学基金(61301279,51479158) 中央高校基本科研业务费专项资金(172102003) 高性能船舶技术教育部重点实验室开放基金课题(2016gxnc01)资助
关键词 无人艇编队 人工势场法 自适应编队控制 路径规划 领航者-跟随者法 USV formation Artificial Potential Field Method adaptiveformation control path Planning Leader-Follower (L-F) Method
作者简介 刘梦佳(1993-):女,硕士生,主要研究领域为无人艇智能感知与路径规划.
  • 相关文献

参考文献1

二级参考文献18

  • 1李胜,马国梁,胡维礼.基于Backstepping方法的车式移动机器人轨迹追踪控制[J].东南大学学报(自然科学版),2005,35(2):248-252. 被引量:21
  • 2Farinelli A, Locchi L, Nardi D.Multirobot systems: A classification focused on coordination[J].IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2004, 34(5): 2015-2028.
  • 3Balch T, Arkin R C.Behavior-based formation control for multirobot teams[J].IEEE Transactions on Robotics and Automation, 1998, 14(6): 926-939.
  • 4Lawton J R T, Beard R W, Young B J.A decentralized approach to formation maneuvers[J].IEEE Transactions on Robotics and Automation, 2003, 19(6): 933-941.
  • 5Wang Y, Yan W, Li J.Passivity-based formation control of autonomous underwater vehicles[J].IET Control Theory and Applications, 2012, 6(4): 518-525.
  • 6Wei R, Sorensen N.Distributed coordination architecture for multi-robot formation control[J].Robotics and Autonomous Systems, 2008, 56(4): 324-333.
  • 7Ghommam J, Mehrjerdi H, Saad M, et al.Formation path following control of unicycle-type mobile robots[J].Robotics and Autonomous Systems, 2010, 58(5): 727-736.
  • 8Mehrjerdi H, Ghommam J, Saad M.Nonlinear coordination control for a group of mobile robots using a virtual structure[J].Mechatronics, 2011, 21(7): 1147-1155.
  • 9Consolini L, Morbidi F, Prattichizzo D, et al.Leader-follower formation control of nonholonomic mobile robots with input constraints[J].Automatica, 2008, 44(5): 1343-1349.
  • 10Shao J, Xie G, Wang L.Leader-following formation control of multiple mobile vehicles[J].IET Control Theory and Applications, 2007, 1(2): 545-552.

共引文献17

同被引文献24

引证文献2

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部