期刊文献+

基于IEM-模糊分析理论的往复式压缩机组安全评价 被引量:5

Safety Evaluation of Reciprocating Compressor Unit Based on IEM-Fuzzy Analysis Theory
在线阅读 下载PDF
导出
摘要 针对往复式压缩机组安全性评价的不确定性和模糊性,提出了一种结合区间数与模糊数学的安全评价方法。该方法利用区间特征根法(IEM)计算评价指标的区间权重向量,利用区间理论可能度计算指标综合权重的修正值,降低了专家判断的不确定性;通过区间梯形隶属度函数计算区间隶属度,构建区间数判断矩阵并计算单因素得分;最后通过区间数符合度判断机组综合得分的评价等级。实例分析中,往复式压缩机组的最大区间数符合度为0.806,即等级为“良好”;同时还得到所有单因素的区间隶属度,与机组的实际情况相符合,验证了该方法的有效性和实用性。 In view of the uncertainty and fuzziness in the safety evaluation of the reciprocating compressor unit, a safety evaluation method which combines the interval number with the fuzzy mathematics is proposed. In this method, the interval eigenvector method (IEM) is used to calculate the interval weight vectors of evaluation indexes, and the uncertainty of expert judgment is reduced by using interval theory possibility degree to calculate the correction values of comprehensive weights of indicators. The interval membership degree function is used to calculate the interval membership degree, and the interval number judgment matrix is constructed and the single factor score is calculated. Finally, the evaluation grade of the comprehensive score of the unit is judged by the interval number coincidence degree. In the case analysis, the maximum number of interval numbers of the reciprocating compressor unit is 0.806, that is, the grade is “good”. At the same time, the membership degree of all single factors is also obtained, which is in line with the actual situation of the unit, and the validity and practicability of the method are verified.
作者 段礼祥 刘洋 刘绍东 唐满红 DUAN Lixiang;LIU Yang;LIU Shaodong;TANG Manhong(School of Mechanical and Transportation Engineering, China University of Petroleum Beijing 102249)
出处 《工业安全与环保》 2019年第7期31-35,39,共6页 Industrial Safety and Environmental Protection
基金 国家自然科学基金面上项目(51674277) 国家重点研发项目(2017YFC0805803)
关键词 往复压缩机组 区间特征根法(IEM) 区间隶属度 区间数符合度 安全评价 reciprocating compressor unit interval eigenvector method (IEM) interval membership interval number coincidence safety evaluation
作者简介 段礼祥,男,教授,主要研究方向为安全评价、安全监测与智能诊断.
  • 相关文献

参考文献10

二级参考文献90

共引文献188

同被引文献39

引证文献5

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部