期刊文献+

船舶主要动力设备能效模型与仿真分析

The Analysis of Energy Efficiency Model and Simulation For Ship’s Main Power Equipment
在线阅读 下载PDF
导出
摘要 根据船、机、桨关系,以船舶动力装置的能量传递为基础,基于Matlab/Simulink仿真平台建立主机能效模型。以某内河旅游船舶为研究对象,根据船体与主机参数,利用回归多项式法得到螺旋桨敞水特性曲线。在船舶上安装油耗仪等传感器,采集了主机瞬时油耗、船舶对地航速、对水航速等数据,并计算了主机的实际能效。针对实船采集的数据,分析了航道水流速度的分布特征。基于仿真模型,计算了船舶在不同航道水流速度与对水航速下的主机能效,比较分析了实测数据与仿真结果,并对模型进行了验证。本文研究对于提升船舶的营运能效指数具有实际指导意义。 According to the hull-engine-propeller relationship, the energy efficiency model of marine main engine is established based on the energy transfer within marine power plant and matlab/simulink simulation platform. An inland river cruise ship is chosen as a research object, and the open-water characteristic curves of propeller are obtained by using the regression polynomial method according to the parameters of hull and main engine. Several sensors, such as fuel consumption of main instruments, are amounted on the target ship. The instantaneous fuel oil consumption of main engine, the ship speed relative to ground, and the speed to water are collected respectively, and then the real main engine energy efficiencies are calculated. The energy efficiencies of main engine under different water speeds and marine speeds relative to water are calculated based on the simulation model. The actual data and simulation results are compared and analyzed, and the model is verified. The research of this paper has practical guiding significance for improving the operating energy efficiency index of ships.
作者 刘凯 文武 周兴 Liu kai;Wen Wu;Zhou Xing(Wuhan Institute of Marine Electric Propulsion,Wuhan 430064,China)
出处 《船电技术》 2019年第7期9-12,共4页 Marine Electric & Electronic Engineering
关键词 主机能效 船、机、桨关系 油耗 水流速度 energy efficiency of main engine hull-engine-propeller relationship fuel consumption water speed
作者简介 刘凯(1980-),男,高工。研究方向:船舶电力推进系统。E-mail:lele.kai@163.com.
  • 相关文献

参考文献2

二级参考文献26

  • 1Marine Environment Protection Committee. Prevention of air pollution from ships(Second IMO GHG Study 2009)[R]. London: International Maritime Organization, 2009.
  • 2Marine Environment Protection Committee. Prevention of air pollution from ships(Third IMO GHG Study 2014)[R]. London: International Maritime Organization, 2014.
  • 3BJILSMA S J. Minimal time route computation for ships with pre-specified voyage fuel consumption[J]. The Journal of Navigation, 2008, 61(4): 723-733.
  • 4LO K. A critical review of China’s rapidly developing renewable energy and energy efficiency policies[J]. Renewable and Sustainable Energy Reviews, 2014, 29: 508-516.
  • 5BALLOU P J. Ship energy efficiency management requires a total solution approach[J]. Marine Technology Society Journal, 2013, 47(1): 83-95.
  • 6PSARAFTIS H N, KONTOVAS C A. Ship speed optimization: concepts, models and combined speed-routing scenarios[J]. Transportation Research Part C: Emerging Technologies, 2014, 44: 52-69.
  • 7SHAO Wei, ZHOU Pei-lin, THONG S K. Development of a novel forward dynamic programming method for weather routing[J]. Journal of Marine Science and Technology, 2012, 17(2): 239-251.
  • 8LINDSTAD H, ASBJ?RNSLETT B E, STR?MMAN A H. Reductions in greenhouse gas emissions and cost by shipping at lower speeds[J]. Energy Policy, 2011, 39(6): 3456-3464.
  • 9NORSTAD I, FAGERHOLT K, LAPORTE G. Tramp ship routing and scheduling with speed optimization[J]. Transportation Research Part C: Emerging Technologies, 2011, 19(5): 853-865.
  • 10LEIFSSON L P, SAEVARSDOTTIR H, SIGUROSSON S P, et al. Grey-box modeling of an ocean vessel for operational optimization[J]. Simulation Modelling Practice and Theory, 2008, 16(8): 923-932.

共引文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部