期刊文献+

尺度及主方向改正的ORB特征匹配算法 被引量:9

Improved ORB Feature Matching Algorithm for Scale and Main Orientation Correction
在线阅读 下载PDF
导出
摘要 针对二进制描述算法(Oriented fast and Rotated Brief,ORB)尺度性配准误差大,配准率低的问题,提出一种尺度和方向改进的ORB特征匹配算法。该算法以二进制描述算法ORB为基础,构建金字塔式尺度空间,改进尺度空间结构,简化尺度空间层数和采样图像数目,使提取特征点的过程更加效率,并采用Harris函数检测特征,消除边缘特征点的影响,提取具有尺度信息的特征点;然后采用梯度方向统计方法改进传统ORB算法中通过灰度质心法计算主方向的方式,优化求解主方向邻域范围,以提高图像特征主方向的准确性。实验结果表明,改进后的ORB算法在尺度和旋转配准方面性能有很大提高,并且配准的精度较传统ORB更高,更能满足复杂图像快速精确配准的要求。 To solve the problem of large scale registration error and low rate of registration in binary description algorithm, this paper proposes an improved ORB feature matching algorithm with scale and direction. The algorithm uses the binary description algorithm ORB as the basis to construct a pyramid scale space, improve the scale space structure, simplify the number of scale space layers and the number of sampled images, make the process of extracting feature points more efficient, and Harris function is used to detect features, eliminate the influence of edge feature points, and extract feature points with scale information. Then, the method of gradient direction statistics is used to replace the way of computing the main direction by the gray-scale centroid method in the traditional ORB algorithm. The main direction of the neighborhood range is optimized and the accuracy of the image feature main direction is improved. The experimental results show that the improved ORB algorithm greatly improves the performance of scale and rotation registration, and the accuracy of registration is higher than the traditional ORB, and it can better meet the requirements of fast and accurate registration of complex images.
作者 柴江龙 樊彦国 王斌 韩志聪 CHAI Jianglong;FAN Yanguo;WANG Bin;HAN Zhicong(School of Geosciences,China University of Petroleum,Qingdao,Shandong 266580,China;Department of Sea Area Management,National Marine Data and Information Service,Tianjin 300171,China)
出处 《计算机工程与应用》 CSCD 北大核心 2019年第13期178-185,共8页 Computer Engineering and Applications
基金 国家自然科学青年科学基金(No.61701542) 海洋动力遥感与声学重点实验室开放基金(No.KHYS1402)
关键词 特征匹配 二进制特征描述算法(ORB) 尺度空间 特征主方向 梯度方向 feature matching Oriented fast and Rotated Brief(ORB)algorithm scale space feature main direction gradient direction
作者简介 柴江龙(1993—),男,硕士研究生,研究领域为图像配准技术、图像融合,E-mail:1178735739@qq.com;樊彦国(1965-),男,博士,教授,研究领域为摄影测量与遥感;王斌(1986-),男,博士,讲师,研究领域为数字图像处理技术;韩志聪,男,硕士研究生,研究领域为GIS系统开发及地图水印技术。
  • 相关文献

参考文献6

二级参考文献41

  • 1童宇,蔡自兴.基于特征匹配的全景图的生成[J].华中科技大学学报(自然科学版),2004,32(S1):77-79. 被引量:2
  • 2李晓明,郑链,胡占义.基于SIFT特征的遥感影像自动配准[J].遥感学报,2006,10(6):885-892. 被引量:155
  • 3Kern J P,Pattichis M S.Robust multispectral image registration using mutual-information models[J].IEEE Transactions on Geoscience and Remote Sensing,2007,45(5):1494-1505.
  • 4Liu X Z,Tian Z,Chai C Y,et al.Multiscale registration of remote sensing image using robust SIFT features in steerable-domain[J].The Egyptian J Remote Sensing and Space Sci,2011,14(2):63-72.
  • 5Calonder M,Lepetit V,Ozuysal M,et al.BRIEF:Computing a local binary descriptor very fast[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2012,34(6):1281-1298.
  • 6Rublee E,Rabaud V,Konolige K,et al.ORB:An efficient alternative to SIFT or SURF[C]//2011 International Conference on Computer Vision,Barcelona,Spain,2011:2564-2571.
  • 7Rosten E,Drummond T.Machine learning for high-speed corner detection[C]//Lecture Notes in Computer Science,2006,3951:430-443.
  • 8Fischer M A,Bolles R C.Random sample consensus:A paradigm for model fitting with applications to image analysis and automated cartography[J].Communications of the ACM,1981,24(6):381-395.
  • 9Marius M,Lowe D G.Fast approximate nearest neighbors with automatic algorithm configuration[C]//International Conference on Computer Vision Theory and Applications,Lisboa,Portugal,2009:331-340.
  • 10Lowe D G.Distinctive image features from scale-invariant keypoints[J].International Journal of Computer Vision,2004,60(2):91-110.

共引文献95

同被引文献63

引证文献9

二级引证文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部