期刊文献+

纯电动汽车直流动力电缆儿童电磁暴露安全评估 被引量:3

Safety Assessment of Child Occupant Exposure to Electromagnetic Field Generated by DC Power Cable in Battery Electric Vehicles
在线阅读 下载PDF
导出
摘要 为评估纯电动汽车直流动力电缆对儿童乘员的电磁暴露水平,基于电磁剂量学的基本原理,利用Comsol Multiphysics有限元软件,建立了车厢、儿童人体和动力电缆的电磁模型,仿真分析了儿童乘员坐在不同位置时,其身体不同组织中的磁通密度,并将结果与国际非电离辐射防护委员会(ICNIRP)制定的标准进行比较。结果表明:普通低速驱动电流为27 A时,不同乘坐位置的儿童体内磁通密度的最大值分别为:0.18μT(副驾位),0.182μT(后排左),1.26μT(后排中),17.8μT(后排右);匀速高速驱动电流为150 A时,对应的最大磁通密度约增大至低速时的5.5倍左右。但这一暴露水平仍远低于ICNIRP推荐的限值,说明直流动力电缆在车厢内产生的电磁辐射不会对儿童乘员构成健康风险。 To assess the level of child occupant exposure to electromagnetic field generated by DC power cables in battery electric vehicles, the models for passenger compartment, child body and DC power cables are established with finite element software Comsol Multiphysics, based on basic principle of electromagnetic dosimetry. A simulation on the models is conducted to analyze the magnetic flux density in different tissues of child body sitting on the different positions of compartment, which are then compared with the guidelines of International Commission on Non-Ionizing Radiation Protection (ICNIRP). The results show that in general low speed drive with a cable current of 27 A, the maximum magnetic flux density in child body tissues at different sitting position is: 0.18 μT (front passenger seat), 0.182 μT (left back seat), 1.26 μT (middle back seat), and 17.8 μT (right back seat) respect ively, while in high-speed cruise drive with a cable current of 150 A, the corresponding maximum magnetic flux densities are around 5.5 times as high as that at low-speed drive. However, these levels are still far below the limit values recommended by ICNIRP, indicating that the magnetic flux density generated in passenger compartment by DC power cable will not cause health risk to child occupant.
作者 董绪伟 逯迈 Dong Xuwei;Lu Mai(Lanzhou Jiaotong University, Key Laboratory of Opto-technology and Intelligent Control, Ministry of Education, Lanzhou 730070)
出处 《汽车工程》 EI CSCD 北大核心 2019年第6期696-702,共7页 Automotive Engineering
基金 国家自然科学基金(51567015,51867014) 兰州交通大学青年基金(2016006)资助
关键词 电动汽车 电磁剂量学 儿童人体模型 磁通密度 battery electric vehicle electromagnetic dosimetry child body model magnetic flux density
作者简介 通信作者:逯迈,教授,博士生导师,E-mail:mai.lu@hotmail.com。
  • 相关文献

参考文献9

二级参考文献57

  • 1孔维政,李琼慧,汪晓露.基于全周期能源利用效率的电动汽车节能减排分析[J].中国电力,2012,45(9):64-67. 被引量:19
  • 2王凡,王志强.开关电源电磁干扰分析及抑制[J].电源技术应用,2005,8(4):26-30. 被引量:15
  • 3陈清泉,孙立清.电动汽车的现状和发展趋势[J].科技导报,2005,23(4):24-28. 被引量:142
  • 4魏天义,沈玉琢,张逸成,姚勇涛.电动汽车用DC/DC变换器的电磁干扰分析和电磁兼容设计[J].低压电器,2005(5):13-15. 被引量:12
  • 5C C Chan, Y S Wong. The State of the Art of Electric Vehicles Technology [A]. In:Proceedings of the 4th International Power Electronics and Motion Controls Conference (IPEMC 2004) [C].Xi'an, China, 2004. 46~57.
  • 6C C Chan, Y S Wong. Electric Vehicles Charge Forward[J]. (Invited Paper) IEEE Power & Energy Magazine, 2004(2): 24~33.
  • 7C.C. Chan. The State of the Art of Electric Vehicles [J]. Journal of Asian Electric Vehicles, 2004(2): 579~600.
  • 8Heliang Zhou. EV progress in China[A] (CDROM). In:Proceedings of 20th International Electric Vehicle Symposium and Exposition[C]. California: ECD Ovonics, 2003.
  • 9Cheng Ximing, Lu Languang, Liu Mingji, Gao Dawei, Wang Haiyan, Pei Pucheng and Ouyang Minggao. A 50kW PEM Fuel Cell Engine Test System [A].In:Proceedings of 3rd Asian ElectricVehicle Conference[C]. Seoul, March 2004.
  • 10C C Chan, K T Chau. Modern Electric Vehicle Technology[M].Oxford :Oxford University Press, 2001.

共引文献371

同被引文献20

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部