期刊文献+

Hilbert空间中由Rosenblatt过程驱动的带有限延迟的随机发展方程

Stochastic Evolution Equations Driven by Rosenblatt Process in a Hilbert Space with Finite Delay
在线阅读 下载PDF
导出
摘要 Rosenblatt过程作为一个重要的自相似随机过程,常被用来刻画非高斯随机现象.为进一步研究Rosenblatt过程对随机现象的刻画,本文考虑由Rosenblatt过程驱动的带有限延迟的一类时间相依随机发展方程适度解的问题.在实值可分Hilbert空间中,运用Banach不动点定理得到了Rosenblatt过程驱动的带有限延迟的随机发展方程适应解的存在性和唯一性,并通过例子说明所得结果是有效的. As an important self-similar stochastic process, Rosenblatt process is often used to describe non-Gaussian random phenomena. In order to further characterize stochastic phenomena driven by Rosenblatt process, we study the mild solution for a class of time-dependent stochastic evolution equations with finite delay driven by Rosenblatt process in this paper. An existence and uniqueness theorem for the mild solution to this class of stochastic evolution equations is obtained by means of the Banach fixed point theorem in a real separable Hilbert space with time-dependent, and an example is proposed to illustrate the result.
作者 桑利恒 吕文华 唐正 SANG Li-heng;LV Wen-hua;TANG Zheng(School of Mathematics and Finance,Chuzhou University,Chuzhou,Anhui 239000;School of Mathematics and Statistics,Anhui Normal University,Wuhu,Anhui 241000)
出处 《工程数学学报》 CSCD 北大核心 2019年第3期309-321,共13页 Chinese Journal of Engineering Mathematics
基金 国家自然科学基金(11271020) 安徽省自然科学基金(1508085QA14) 安徽省杰出青年科学基金(1608085J06) 安徽省高校自然科学基金(KJ2016A527 KJ2017A426 KJ2018A0429) 滁州学院自然科学基金(2016QD13)~~
关键词 随机发展方程 发展算子 Rosenblatt过程 不动点定理 适度解 stochastic evolution equation evolution operator Rosenblatt process fixed point theorem mild solution
作者简介 桑利恒(1983年8月生),男,博士,讲师.研究方向:随机分析及其应用.
  • 相关文献

参考文献1

二级参考文献14

  • 1Alos E, Mazet O, Nualart D. Stochastic calculus with respect to Gaussian processes. Ann Probab, 1999, 29:766-801.
  • 2Bao J, Hou Z. Existence of mild solutions to stochastic neutral partial functional differential equations with non-Lipschitz coefficients. Comput Math Appl, 2010, 59: 207-214.
  • 3Boufoussi B, Hajji S. Neutral stochastic functional differential equations driven by a fractional Brownian motion in a Hilbert space. Statist Probab Lett, 2012, 82:1549 1558.
  • 4Cao G, He K, Zhang X. Successive approximations of infinite dimensional SDES with jump. Stoch Syst, 2005, 5:609-619.
  • 5Caraballo T, Garrido-Atienza M J, Taniguchi T. The existence and exponential behavior of solutions to stochastic delay evolution equations with a fractional Brownian motion. Nonlinear Anal, 2011, 74:3671-3684.
  • 6Caraballo T, Real J, Taniguchi T. The exponential stability of neutral stochastic delay partial differential equations. Discrete Contin Dyn Syst, 2007, 18:295-313.
  • 7Govindan T E. Almost sure exponential stability for stochastic neutral partial functional differential equations. Stochastics, 2005, 77:139 154.
  • 8Grimmer R. Resolvent operators for integral equations in a Banach space. Trans Amer Math Soc, 1982, 273:333-349.
  • 9Jiang F, Shen Y. A note on the existence and uniqueness of mild solutions to neutral stochastic partial functional differential equations with non-Lipschitz coefficients. Comput Math Appl, 2011, 61:1590-1594.
  • 10Mishura Y. Stochastic Calculus for Fractional Brownian Motion and Related Topics. Lecture Notes in Mathematics Vol 1929. Berlin: Springer-Verlag 2008.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部