期刊文献+

绍兴某山地现场热响应试验研究 被引量:1

Situ Thermal Response Testing in a Mountainous Area of Shaoxing
在线阅读 下载PDF
导出
摘要 热物性参数是地源热泵系统地埋管换热器设计的关键参数。采用自行研制的岩土热物性参数测试仪,于地处夏热冬冷地区的绍兴某山地开展单U和双U测试井现场热响应试验,使用线热源模型对数据进行分析,获得工程所在山地单U测试井的岩土导热系数为2. 27 W/(m·K),钻井热阻为0. 123 (m·K)/W,排热工况下单位延米换热量为86. 39 W/m,双U测试井的岩土导热系数为3. 31 W/(m·K),钻井热阻为0. 119 (m·K)/W,单位延米换热量为106. 72 W/m,为该地区地源热泵系统的设计及施工提供了依据。 The rock-soil thermal properties are key parameters for designing ground heat exchangers in ground source heat pump system. The thermal response test of a single-U and double-U test well was carried out in a mountainous area of Shaoxing located in the region of hot summer and cold winter by using the ground thermal properties parameter test instrument of our own research and development,and the data was analyzed by using a line heat source model. The rock-soil thermal conductivity in the single-U test well in the mountainous area is 2. 27 W/( m·K),the drilling thermal resistance is 0. 123( m·K)/W,the unit of meters for heat exchange rate is 86. 39 W/m;the rock-soil thermal conductivity in the double-U test well is 3. 31 W/( m·K),the drilling resistance is 0. 119( m·K)/W,and the unit of meters for heat exchange rate is 106. 72 W/m,which provided a basis for the region of ground source heat pump system design and construction.
作者 鲁文桥 陈帅 LU Wen-qiao;CHEN Shuai(Shanghai University of Engineering Science,Shanghai 201600,China)
出处 《建筑节能》 CAS 2019年第5期64-67,共4页 BUILDING ENERGY EFFICIENCY
关键词 岩土热物性 热响应试验 岩土导热系数 钻井热阻 单位延米换热量 rock-soil thermal properties thermal response test rock-soil thermal conductivity drilling thermal resistance unit of meters for heat exchange rate
作者简介 鲁文桥(1993),男,安徽安庆人,能源装备与过程控制专业,硕士研究生,主要从事建筑能源应用研究(1003122504@qq.com)。
  • 相关文献

参考文献5

二级参考文献50

  • 1赵军,段征强,宋著坤,李丽梅.基于圆柱热源模型的现场测量地下岩土热物性方法[J].太阳能学报,2006,27(9):934-936. 被引量:47
  • 2徐伟,张时聪.中国地源热泵技术现状及发展趋势[J].太阳能,2007(3):11-14. 被引量:35
  • 3王书中,由世俊,张光平.热响应测试在土壤热交换器设计中的应用[J].太阳能学报,2007,28(4):405-410. 被引量:53
  • 4[1]Sulatisky M T, G van der Kamp. Ground-Source Heat Pumps in the Canadian Prairies. ASHRAE Transactions,1991, 97(1): 374-385
  • 5[2]Cane R L D, Forgas D A. Modeling of Ground-Source Heat Pump Performance. ASHRAE Transactions, 1991,97(1): 909-925
  • 6[3]Bose, J E. Soil and Rock Classification for the Design of Ground-Coupled Heat Pump Systems-Field Manual, Epri CU-6600. Oklahoma: International Ground Source Heat Pump Association, 1989. 29-33
  • 7[4]Yu Mingzhi, Fang Zhaohong. The Influence of Soil Freezing on Heat Transfer of Geothermal Heat Exchangers. In:Proc. of the International Conference on Power Engineering. Xi'an: TUP and Springer, 2001. 1442-1449
  • 8[5]Deerman J D, Kavanaugh S P. Simulation of Vertical U-tube Ground Coupled Heat Pump Systems Using the Cylindrical Heat Source Solution. ASHRAE Transactions, 1991, 97(1): 287-295
  • 9[6]Yian Gu, Dennis L O'Neal. Development of an Equivalent Diameter Expression for Vertical U-Tube Used in Ground-Coupled Heat Pumps. ASHRAE Transactions 1998, 104(2): 347-55
  • 10[7]Kavanaugh S P. Field Tests for Ground Thermal Properties-Methods and Impact on Ground-Source Heat Pump Design. ASHRAE Transactions, 1992, 98(9): 607-615

共引文献98

同被引文献14

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部