期刊文献+

基于电商承诺送达机制的低碳"同日达"配送路径规划 被引量:6

The Low Carbon “Same-day Delivery” Vehicle Routing Based on E-commerce Commitment Delivery Mechanism
原文传递
导出
摘要 针对"同日达"物流配送中的承诺送达机制,提出一种同时考虑消费者满意度和碳排放量的物流配送问题,基于电商平台配送成本、消费者满意度以及碳排放量三个方面,建立多目标多配送站"同日达"配送路径优化模型。根据建立的优化模型,提出一种改进后的人工蜂群算法进行求解,将"就近原则"引入初始化阶段,从而使多配送站问题转化为单配送站问题,并通过精英保留策略有效地利用种群中优势解的有利信息,从而提高对其最优解的搜索效率。实验结果表明,所提出的优化模型和算法的求解结果能够兼顾物流成本、消费者满意度和碳排放量三个目标。 Aiming at the commitment delivery mechanism in the“Same-day delivery”,this paper proposes a logistics distribution problem that considers consumer satisfaction and carbon emissions for the“Same-day delivery”logistics distribution model,based on e-commerce platform distribution costs,consumer satisfaction and carbon emissions.At the level,a multi-objective multi-depot optimization model is established.Furthermore,according to the established optimization model,an improved artificial bee colony algorithm is proposed to solve the problem,and the“principle of proximity”is introduced into the initialization stage,so that the multi-depot problem can be transformed into single-depot problems,and through the elite retention strategy,the beneficial information of the dominant solution in the population is effectively utilized,thereby improving the search efficiency of its optimal solution.The experimental results show that the proposed optimization model and algorithm can solve the three objectives of logistics cost,consumer satisfaction and carbon emission cost.
作者 浦徐进 李秀峰 付亚平 PU Xu-jin;LI Xiu-feng;FU Ya-ping(Business School of Jiangnan University,Wuxi 214122,China;Business School of Qingdao University,Qingdao 266071,China)
出处 《系统工程》 CSSCI 北大核心 2018年第12期47-57,共11页 Systems Engineering
基金 国家自然科学基金面上项目(71871105) 江苏省第五期“333工程”培养资金资助项目(BRA2016412) 第十四批“六大人才高峰”高层次人才项目(JY-012).
关键词 同日达 前景理论 碳排放 多配送站 人工蜂群算法 Same-day Delivery Prospect Theory Carbon Emission Multi-depot Artificial Bee Optimization
作者简介 浦徐进(1979-),江南大学商学院教授,研究方向:供应链管理;李秀峰(1994-),江南大学商学院研究生,研究方向:行为运筹.
  • 相关文献

参考文献5

二级参考文献98

  • 1王颖,谢剑英.一种自适应蚁群算法及其仿真研究[J].系统仿真学报,2002,14(1):31-33. 被引量:232
  • 2丰伟,李雪芹.基于粒子群算法的多目标车辆调度模型求解[J].系统工程,2007,25(4):15-19. 被引量:14
  • 3Yu G, Qi x. Disruptionmanagement : Framework, Models and Applications[ M ]. Singapore : World Scientific Publishing, 2004.
  • 4Clausen J, Larsen A, Larsen J, et al. Disruption management in the airline industry-concepts, models and methods [ J ]. Computers & Operations Research, 2010, 37 (5) : 809 - 821.
  • 5Qi x, Bard J F, Yu G. Supply chain coordination with demand disruptions[J]. Omega, 2004, 32(4) : 301 -312.
  • 6Zhu Z, Bard J F, Yu G. Disruption management for resource-constrained project scheduling[ J]. Journal of the Operational Research Society, 2005, 56(4) : 365 - 381.
  • 7Potvin J Y, Xu Y, Benyahia I. Vehicle routing and scheduling with dynamic travel times[ J]. Computers & Operations Re- search, 2006, 33(4): 1129 L 1137.
  • 8Huisman D, Freling R, Wagelmans A P M. A robust solution approach to the dynamic vehicle scheduling problem [ J ]. Transportation Science, 2004, 38 (4) : 447 - 458.
  • 9Zeimpekis V, Giaglis G M, Minis I. A dynamic real-time fleet management system for incident handling in city logistics [ C ]. Vehicular Technology Conference, VTC 2005-Spring, 2005, 5 : 2900 - 2904.
  • 10Li J Q, Borenstein D, Mirchandani P B. A decision support system for the single-depot vehicle rescheduling problem [ J ]. Computers & Operations Research, 2007, 34(4) : 1008 -1032.

共引文献59

同被引文献84

引证文献6

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部