期刊文献+

基于GRNN的可穿戴式脑电仪EEG疲劳检测 被引量:4

EEG fatigue detection of wearable electroencephalograph based on GRNN
在线阅读 下载PDF
导出
摘要 针对单电极可穿戴式脑电仪的脑电波信号(EEG)的疲劳状态智能识别,进行了基于广义回归神经网络(GRNN)的疲劳状态检测的研究。首先,通过调查问卷调查用户主观疲劳量,结合疲劳检测手环实现EEG数据的疲劳等级标记以建立数据集;其次,采用数据清洗等方式实现数据预处理并提取数据的时域特征、频域特征;运用主元分析进行特征降维;然后,建立GRNN疲劳识别模型并计算识别准确率;同时以支持向量机(SVM)方法作为对比实验检验模型效果;最后,以建立好的GRNN模型进行疲劳检测。研究发现,GRNN模型下EEG疲劳状态识别准确率最高为88.1%,相比SVM模型更高,对于EEG的疲劳状态的检测具有更好的稳定性和区分度。 A study is carried out based on the fatigue state detection of general regression neural network (GRNN) for intelligent identification of the fatigue state of electroencephalogram (EEG) of a single electrode wearable electroencephalograph. First of all, the data sets are built by using the questionnaire to investigate the Karolinska sleepiness scale that the users feel about and the fatigue level marking EEG data based on fatigue detection bracelet. Then, the data preprocessing is realized by means of datacleaning in order to extract features from both time domain and frequency domain;principal component analysis is used to reduce the dimension of the data;the fatigue recognition model is established by GRNN and the recognition accuracy is calculated;and the support vector machine (SVM) method is used as the comparison to our test model. Finally, the fatigue testing is carried out with the established GRNN model. In conclusion, the GRNN model, whose recognition accuracy under the fatigue state has peaked at 88.1%, gets the better results than the SVM model. It has a better effect on the EEG fatigue detection in the sense of stability and discrimination.
作者 张兆瑞 赵群飞 张朋柱 Zhang Zhaorui;Zhao Qunfei;Zhang Pengzhu(Laboratory of System Control and Information Processing, Department of Automation, Shanghai Jiaotong University, Shanghai 200240;Antai College of Economics & Management, Shanghai Jiaotong University, Shanghai 200030)
出处 《高技术通讯》 EI CAS 北大核心 2019年第3期266-273,共8页 Chinese High Technology Letters
基金 国家自然科学基金(91646205)资助项目
关键词 可穿戴式脑电仪(EEG) 疲劳检测 数据清洗 特征提取 广义回归神经网络 脑电波信号 wearable electroencephalograph (EEG) fatigue detection data cleaning feature extraction generalized regression neural network (GRNN) electroencephalograph
作者简介 张兆瑞,男,1993年生,硕士生;研究方向:模式识别,脑电波分析;E-mail:bestfuture@sjtu.edu.cn;通信作者:张朋柱,E-mail:pzzhang@sjtu.edu.cn.
  • 相关文献

参考文献8

二级参考文献73

  • 1廖建桥.脑力负荷及其测量[J].系统工程学报,1995,10(3):119-123. 被引量:35
  • 2SPECHT D F. A general regression neural network [ J]. IEEE Transactions on Neural Networks, 1991,2(6) : 568 -576.
  • 3BURCU E, TULAY Y. Improving classification performance of sonar targets by applying general regression neural network with PCA [ J ]. Expert Systems with Applications, 2008, 35 ( 1/2 ) : 472 - 475.
  • 4JELENA P, SVETLANA I, ZORICA D, et al. An investigation into the usefulness of generalized regression neural network analysis in the development of level A in vitro - in vivo correlation [J]. European Journal of Pharmaceutical Sciences, 2007, 30 ( 3/4 ) : 264 - 272.
  • 5GHOLAMREZAEI M, GHORBANIAN K. Rotated general regression neural network [ C ]//Proceedings of International Joint Conference on Neural Networks, August 12 - 17, Orlando, Florida, USA, 2007:1959 - 1964.
  • 6DEL VALLE Y, VENAYAGAMOORTHY G K, MOHAGHEGHI S, et al. Particle swarm optimization: basic concepts, variants and applications in power systems [ J ]. IEEE Transactions on Evolutionary Computation, 2008, 12(2) :171 - 195.
  • 7SOLTANI M R, GHORBANIAN K. Wind Tunnel Calibration [ R]. Tehran: Sharif University of Technology, 2004.
  • 8Kryger.张秀华译.睡眠医学-理论与实践[M].北京:人民卫生出版社,2010:849-858.
  • 9Knowles W B. Operator loading tasks [ J ]. Human Factors, 1963(5) : 155-161.
  • 10Cooper G, Harper R. The use of pilot ratings in evaluation of aircraft handling qualities [ R ]. NASA Ames Tech. Rept. , NASA TN-D-5153. Moffett Field, CA: NASA Ames Re-search Center, 1969,

共引文献63

同被引文献27

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部