期刊文献+

基于GBRT的交通流量预测算法研究 被引量:5

Research on the Traffic Flow Forecasting Algorithm Based on GBRT
在线阅读 下载PDF
导出
摘要 传统的交通流量预测算法没有考虑到商圈的性质、交通拥堵等情况,而这些影响因子在智能交通时代对于人们的出行有着举足轻重的影响。同时,其预测目标也不是起点和终点的流量。经过对流量预测算法进行研究,给出基于GBRT的集成学习模型对交通领域的起始地-目的地对的流量进行预测,并利用平均绝对误差(MAE)和均方根误差(RMSE)评价指标对模型进行评估,结果证明使用GBRT进行流量预测具有较好的效果。 The traditional traffic flow prediction algorithm does not consider the nature of the business circle, traffic congestion, etc., and these impact factors have a significant impact on people's travel in the era of intelligent transportation. At the same time, its predicted goal is not the flow of the origin and destination. After research of the traffic prediction algorithm, presents an integrated learning model based on GBRT to forecast the flow of given origin and destination in the traffic field, and evaluates the model by Root Mean Square Error (RMSE), Mean Absolute Error(MAE). The results show that GBRT has a good effect in traffic prediction.
作者 周鑫 ZHOU Xin(College of Computer Science, Sichuan University, Chengdu 610065)
出处 《现代计算机》 2019年第7期38-41,共4页 Modern Computer
关键词 GBRT 起始地-目的地对 流量预测 GBRT Origin- Destination Pair Traffic Prediction
作者简介 周鑫(1993-),男,四川成都人,硕士,研究方向为数据挖掘、城市计算.
  • 相关文献

参考文献2

二级参考文献17

  • 1PEETA S, ZILIASKOPOULOS A K. Foundations of dynamic traffic assignment: the past, the present and the future [ J]. Networks and Spatial Economics,2001,1 ( 3 ) : 233 - 265.
  • 2KARLAFTIS M, VLAHOGIANNI E. Statistical methods versus neural networks in transportation research : differences, similarities and some insights [ J ]. Transportation Research Part C: Emerging Technol- ogies,2011,19(3) :387-399.
  • 3LI Xing-yi,JlANG Yu-ba,SHI Hua-ji. Short-term traffic volumes fore- casting of road network based on nonparametric regression[ C ]//Proc of the 7th International Conference on latural Computation. Washington DC : IEEE Computer Society, 2011:228 - 231.
  • 4TSIRIGOTIS L, VLAHOGIANNI E I, KARLAFTIS M G. Does infor- mation on weather affect the performance of short-term traffic forecas- ting models? [J]. International Journal of Intelligent Transporta- tion Systems Research ,2012,10( 1 ) : 1-10.
  • 5VLAHOGIANNI E I, KARLAFTIS M G. Comparing traffic flow time- series under fine and adverse weather conditions using recurrence- based complexity measures[ J]. Nonlinear Dynamics,2012,69 (4) : 1949-1963.
  • 6LEE Y S, TONG L I. Forecasting time series using a methodology based on autoregressive integrated moving average and genetic pro- gramming [ J ]. Knowledge-Based Systems, 2011,24 ( 1 ) : 66 - 72.
  • 7MIN Wan-lin, WYNTER L. Real-time road traffic prediction with spatio-temporal correlations [ J ]'. Transportation Research Part C: Emerging Technologies,2011 ,t9(4) :606-616.
  • 8PAN T, SUMALEE A ,ZI-IONG R, et al. Short-term traffic state pre- diction based on temporal-spatial correlation[ J]. IEEE Trans on In- telligent Transportation Systems, 2013,14 ( 3 ) : 1242-1254.
  • 9ZHANG Yang, WANG Meng-ling. Peak traffic forecasting using non- parametric approaches[ J]. Journal of Shanghai diaotong Universi- ty: Science,2012,17( 1 ) :76-81.
  • 10ZENG Shao-hua, TANG Yuan-yuan, WEI Yan, et al. An algozithm of detecting out[lets in SVR[ J ]. International ,Journal of Wavelets, 2012,3(10) : 1-23.

共引文献14

同被引文献59

引证文献5

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部