期刊文献+

小生境遗传算法优化压水堆换料的研究

Study on Fuel Foading Pattern Optimization for a Pressurized Water Reactor Based on Niche Genetic Algorithm
在线阅读 下载PDF
导出
摘要 提出一种基于小生境遗传算法的压水堆初装料优化方法,以大亚湾压水堆核电站堆芯燃料组件布置为参照模型,通过计算机编程语言将优化算法以及堆芯物理参数计算程序整合,堆内参数计算选用堆芯计算软件"donjon"以及组件计算软件"dragon",以此对大亚湾压水堆核电站初装料燃料组件布置进行优化计算,并将结果与相关研究文献对比分析,验证文中采用方法的正确性。经对比分析,证实文中提出方法能较好解决压水堆初装料问题,且优化过程中在有限初始群体个数及有限迭代次数下,算法全局搜索强,收敛速度快,收敛效果好。优化结果表明,kh满足安全限值范围(kh<1.4),与参考方案相比keff得到增加,且在一定程度上优于参考文献值。 A modified genetic algorithm-niche genetic algorithm is presented in this paper for first fuel loading pattern optimization,the mathematical model for the loading pattern optimization for a pressurized water reactor(PWR)was established on Daya Bay Nuclear Power Plant.In order to optimize the first fuel loading pattern for Daya Bay Nuclear Power Plant,Mixing the optimization algorithm with nuclear physics calculation code by computer programming language.Nuclear physics calculation code consist of core physics calculation code"Donjon"and assembles group constant calculation code"Dragon".Then comparing the result with related research paper to verify the validity of this method.It is proved that programs developed by this paper can optimize the fuel loading pattern effectively.The algorithm have great global search capability,fast convergent rate and good convergence results with limited number of initial population and limited number of iteration.The result shows that,the local power peaking factor is satisfied the safety requirement(k h<1.4),while the core effective multiplication factor has increase comparing with scheme for reference.
作者 谭智雄 蔡杰进 TAN Zhixiong;CAI Jiejin(School of Electric Power,South China University of Technology,Guangdong of Guangzhou Prov.510000,China)
出处 《核科学与工程》 CAS CSCD 北大核心 2019年第1期61-66,共6页 Nuclear Science and Engineering
基金 广东省科技项目(2014A01016012)
关键词 换料优化 小生境遗传算法 优化计算 初装料 Refueling optimization Niche genetic algorithm Optimal computation First fuel loading pattern
作者简介 谭智雄(1994—),男,湖南衡阳人,硕士研究生,从事核反应堆物理分析研究工作;通信作者:蔡杰进:epjjcai@scut.edu.cn.
  • 相关文献

参考文献6

二级参考文献25

  • 1安伟光,赵维涛,严心池.不完整结构系统同时考虑强度和刚度的可靠性分析[J].工程力学,2005,22(4):58-61. 被引量:7
  • 2马清亮,胡昌华.多目标进化算法及其在控制领域中的应用综述[J].控制与决策,2006,21(5):481-486. 被引量:23
  • 3汪民乐,高晓光,刘刚.遗传算法早熟问题的定量分析及其预防策略[J].系统工程与电子技术,2006,28(8):1249-1251. 被引量:17
  • 4HOLLAND J H. Adaptation in Natural Artificial Systems[M]. MA:MIT Press, 1975.
  • 5GOLDBERG D E. Computer-aided Gas Pipeline Operation Using Genetic Algorithms and Rule Learning[D]. Department of Civil Engineering, University of Michigan, No. 8402282,1983.
  • 6COELLO C A, CHRISTIANSEN A D, FARRERA F A. A genetic algorithm for the optimal design of axially loaded non-prismatic columns[J]. Civil Engineering Systems, 1996,14(2) : 147-152.
  • 7MICHALEWICZ Z. Genetic Algorithms + Data Structures:Evolution Programs[M]. Springer-Verlag, Second, Extended Edition, 1994.
  • 8PRASAD C K Varma Thampan, KRISHNAMOORTHY C S. System reliability-based configuration optimization of trusses[J]. Journal of structural Engineering, 2001,127(8) : 947-955.
  • 9Abraham A,Jain L,Goldberg R.Evolutionary Multi-objective Optimization:Theoretical Advances and Applications[M].London,UK:Springer Verlag,2005.
  • 10Rudolph G. Convergence analysis of canonical genetic algorithms[J]. IEEE Trans on Neural Networks, 1994, 5 (1): 96-101.

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部