期刊文献+

环状硅氧烷添加剂对LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2/SiO@C电池高温性能的改善 被引量:2

Improving the High Temperature Performance of LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2/SiO@C Cells by Introducing the Cyclosiloxanes Additive
在线阅读 下载PDF
导出
摘要 用2,4,6,8-四甲基-2,4,6,8-四乙烯基环四硅氧烷(TVTMTS)作为添加剂,有效改善了在LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2/SiO@C全电池中的高温性能和界面特性。含有0.5%或1%TVTMTS的电池以60℃存储28天,厚度仅增长2.52%或3.04%。高温存储后的电池以1C速率循环100周期后,含有0.5%TVTMTS添加剂的电池,其容量保持率较空白组显著提升至92.61%。并且,通过对电解液60℃的高温存储,可以观察到含有TVTMTS的电解液色度值变化缓慢。此外,SEM数据说明了TVTMTS对电池正负极结构和电极-电解液界面稳定性均有积极作用。 This work reported2,4,6,8-Tetramethyl-2,4,6,8-tetravinylcyclotetrasiloxane(TVTMTS)as a electrolyteadditive,and effectively improved the electrochemical performance and the interface characteristics ofLiNi0.5Co0.2Mn0.3O2/SiO@C cells in high temperature.After the28days storages at60℃when adding0.5%,1%TVTMTS,the thickness of cells only increased by2.52%and3.04%.The cells after stored at high temperaturewas cycled at1C rate for100times,the cells containing0.5%TVTMTS obtained greatest capacity retention of92.61%compared with blank group.In addition,the60℃electrolytes storage test was also studied in this work.The results of chromaticity showed the TVTMTS-contained electrolytes were more stable than blank group athigh temperature.Futhermore,SEM results showed that TVTMTS had positive effects on the structure of bothNCM cathode and silicon-based anode,as well as the electrode-electrolyte interface stability.
作者 沈佳琪 陈海峰 余乐 黄东海 罗智阳 SHEN Jia-qi;CHEN Hai-feng;YU Le;HUANG Dong-hai;LUO Zhi-yang(Shaanxi University of Science & Technology,Xi'an 710016,China;Guangzhou Key Laboratory of New Functional Materials for Power Lithium-ion Battery,Guangzhou Tinci Materials TechnologyCo. Ltd.,Guangzhou 510700,China)
出处 《广州化学》 CAS 2018年第6期9-16,共8页 Guangzhou Chemistry
基金 2017年广州市产学研协同创新重大项目(201704030011) 2017年广州市科技计划项目(201704030020)
关键词 锂离子电池 电解液添加剂 LiNi0.5Co0.2Mn0.3O2 硅基负极 高温性能 Lithium-ion battery additive LiNi0.5Co0.2Mn0.3O2 silicon anode high temperature performance
作者简介 沈佳琪(1994-),女,内蒙古包头人,硕士研究生;主要从事锂离子电池电解液方向研究;通讯作者:陈海峰(1964-),男,陕西眉县人,博士,教授;主要从事化工过程节能方向研究。chenhf@sust.edu.cn
  • 相关文献

参考文献3

二级参考文献63

  • 1Armand M, Tarascon J M. Building better batteries[J]. Na- ture, 2008, 451(7179): 652-657.
  • 2Goodenough J B, Kim Y. Challenges for rechargeable Li batteries[J]. Chemistry of Materials, 2009, 22(3): 587-603.
  • 3Winter M, Besenhard J O, Spahr M E, et al. Insertion elec- trode materials for rechargeable lithium batteries [J]. Ad- vanced materials, 1998, 10(10): 725-763.
  • 4Besenhard J O, Yang J, Winter M. Will advanced lithi- um-alloy anodes have a chance in lithium-ion batteries[J]. Journal of Power Sources, 1997, 68(1): 87-90.
  • 5Boukamp B A, Lesh G C, Huggins R A. All-solid lithium electrodes with mixed-conductor matrix[J]. Journal of the Electrochemical Society, 1981, 128(4): 725-729.
  • 6Arico A S, Bruce P, Scrosati B, et al. Nanostructured ma- terials for advanced energy conversion and storage devices [J]. Nature materials, 2005, 4(5): 366-377.
  • 7Szczech J R, Jin S. Nanostructured silicon for high capaci- ty lithium battery anodes[J]. Energy & Environmental Sci- ence, 2011, 4(1): 56-72.
  • 8Wu H, Cui Y. Designing nanostructured Si anodes for high energy lithium ion batteries[J]. Nano Today, 2012, 7(5): 414-429.
  • 9Wu H, Zheng G, Liu N, et al. Engineering empty space be- tween Si nanoparticles for lithium-ion battery anodes [J]. Nano letters, 2012, 12(2): 904-909.
  • 10Wu H, Chan G, Choi J W, et al. Stable cycling of dou- ble-walled silicon nanotube battery anodes through sol- id-electrolyte interphase control[J]. Nature nanotechnolo- gy, 2012, 7(5): 310-315.

共引文献11

同被引文献615

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部