期刊文献+

用改进Apriori算法确定药房处方药物的关联规则 被引量:7

Identifying association rules among drugs in prescription of a single drugstore using new Apriori method
在线阅读 下载PDF
导出
摘要 针对在药房和药店等医疗保健系统产生大量的交易数据进行数据挖掘的问题。为了从药房和药店等医疗保健系统中获取有关药物间关联的有用信息,在本文中,采用改进Apriori算法从药房内订购的处方获得的数据进行数据挖掘,通过SPSS Clementine平台试验,从这些处方中的指定药物中获得了10个关联规则。在这些关联规则中,得出了以下主要结论:维生素D和钙片是最相关的药物,奥美拉唑和甲硝唑在关联方面排名第二。这些规则的准确性也由医生亲自研究和审查。 The problem of data mining is that large amounts of transaction data are generated in health care systems such as pharmacies and pharmacies.In order to obtain useful information about drugassociation from health care systems such as pharmacies and pharmacies,in this paper,data mining is performed using improved Apriori algorithms to obtain data from prescriptions ordered in pharmacies,from the SPSS Clementine platform trials,from these prescriptions.10 association rules were obtained for the specified drugs.In these association rules,the following main conclusions are drawn:Vitamin D and calcium tablets are the most relevant drugs,and omeprazole and metronidazole rank second in association.The accuracy of these rules is also studied and reviewed by doctors personally.
作者 黄黎明 刘振宇 HUANG Li-ming;LIU Zhen-yu(School of Computer,University of South China,Hengyang 421001,China)
出处 《电子设计工程》 2018年第24期36-40,共5页 Electronic Design Engineering
关键词 数据挖掘 关联规则 购买组合分析 算法 data mining association rules purchase portfolio analysis algorithm
作者简介 黄黎明(1991—),男,湖南衡阳人,硕士研究生。研究方向:数据挖掘、医学信息工程。
  • 相关文献

参考文献6

二级参考文献62

  • 1田亮,程耕国.基于SSH2的物资管理系统研究与实现[J].软件导刊,2010,9(5):91-93. 被引量:9
  • 2耿素云.集合论与图论[M].北京:北京大学出版社,1997.
  • 3邓维斌.SPSSl9(中文版)统计分析实用教程[M].北京:电子工业出版社.2012.
  • 4赵贤,张志强,黄民,王磊.基于最小时间算法的自动化药房系统优化设计[J].北京信息科技大学学报,2013,28(3):39-42.
  • 5陈红鸽,朱姗薇.我院自动化门诊药房的建立与运行[J].中国药房,2007,18(31):2426-2427. 被引量:37
  • 6Han J, Kamber M. Data mining: Concepts and techniques[M]. San Mateo: Morgan Kaufmann, 2000.
  • 7Agrawal R, Imielinski T, Swami A. Mining association rules between sets of items in large databases[C]// Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data, New York, USA, 1993, 22(2): 207-216.
  • 8Brin S, Motwani R, Silverstein C. Beyond market baskets: Generalizing association rules to correlations[C]// Proceedings of the 1997 CM SIGMOD International Conference on Management of Data, New York, USA, 1997, 26(2): 265-276.
  • 9Tsur D, Ullman J D, Abiteboul S, et al. Query flocks: A generalization of association-rule mining[C]// Pro- ceedings of the 1998 ACM SIGMOD International Conference on Management of Data, New York, USA, 1998, 27(2): 1 -12.
  • 10Agrawal R, Srikant R. Fast algorithms for mining association rules[C]// Proceedings of the 20th International Conference on Very Large Data Bases, San Francisco, USA, 1994: 487-499.

共引文献79

同被引文献75

引证文献7

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部