期刊文献+

基于概率神经网络的串联电弧故障检测 被引量:4

Detection of series arc fault based on probabilistic neural network
在线阅读 下载PDF
导出
摘要 故障电弧分为串联电弧和并联电弧,并联电弧故障表现为电流短路、故障电流大,现有电气保护体系能对其保护;而串联电弧故障因受线路负载限制,其故障电流小,以至于现有体系无法实现对串联电弧故障保护,存在电气安全隐患。提出一种方法通过实验获得正常工作和电弧故障时电流波形,并提取小波变换的特征值,将特征值输入概率神经网络模型,参照UL 1699标准,通过计算0.5 s内检测到的故障半周期数是否大于8,大于8则判断为电弧故障。通过MATLAB分析,选择40组测试数据,故障识别率为95%,表明了该方法的有效性。 The arc fault includes parallel arc and series arc.The parallel arc fault is characterized by short circuit current and fault current is large,which can be protected by the current circuit breaker.The series arc fault is limited by the load and fault current is small,which cannot be protected by the current circuit breaker.The current waveform of normal operation and arc fault is obtained through experiments,and the characteristic values of wavelet transform are extracted.The characteristic value was input into the probabilistic neural network model.According to UL1699standard,arc fault is judged by calculating whether the half-cycle fault number is greater than8in0.5s.Using MATLAB simulation,40groups of test data are selected.38groups of test results are correct and2groups are wrong.The fault identification rate is95%,which shows the effectiveness of the method.
作者 吴丰成 曲娜 任行浩 许凯 张鹏辉 Wu Fengcheng;Qu Na;Ren Xinghao;Xu Kai;Zhang Penghui(School of Safety Engineering,Shenyang Aerospace University,Shenyang 110136,China)
出处 《电子技术应用》 2018年第12期65-68,共4页 Application of Electronic Technique
基金 沈阳航空航天大学大学生创新创业训练项目(X1701156 S1701058) 辽宁省教育厅科学研究项目(L201742)
关键词 电弧故障检测 概率神经网络 特征信号值 小波变换 arc fault detection probalitistic neural network feature signal value wavelet transform
作者简介 吴丰成(1996-),男,本科,主要研究方向:电弧故障理论与技术;通信作者,曲娜(1979-),女,硕士,讲师,主要研究方向:电气火灾探测理论与技术,E-mail:mn_qn@qq.com。
  • 相关文献

参考文献6

二级参考文献41

  • 1何正友,蔡玉梅,钱清泉.小波熵理论及其在电力系统故障检测中的应用研究[J].中国电机工程学报,2005,25(5):38-43. 被引量:190
  • 2蔡彬,陈德桂,吴锐,王鑫伟,高冬梅,陈卫国.开关柜内部故障电弧的在线检测和保护装置[J].电工技术学报,2005,20(10):83-87. 被引量:80
  • 3杨建红,张认成,房怀英.Duffing振子信号探测在故障电弧短路保护中的应用[J].电力系统自动化,2006,30(24):69-72. 被引量:12
  • 4Spyker R, Schweickart D. L, Horwath J. C, et al. An evaluation of diagnostic techniques relevant to arcing fault current interrupters for direct current power systems in future aircraft[C]. Electrical Insulation Conference and Electrical Manufacturing Expo, 2005 : 146 - 150.
  • 5Restrepo C. E. Discrimination Methods [C] 53th IEEE holm conference, Arc Fault Detection and Electrical contacts 2007. The 2007: 115-122.
  • 6James A. Momoh, Kumar D. M. V. et al. LabVIEW Based Implementation Action for DC Arcing of Remedial Faults in a Spacecraft [C]. Power Engineering Society General Meeting, 2003 : 491 - 498.
  • 7James A. Momoh, Robberl B. Design and Analysis of Aerospace DC Arcing Faults Using Fast Fourier Transformation and Artificial Neural Network [C]. Power Engineering Society General Meeting, 2003: 788-793.
  • 8Kim C.H., Kim H.Y., Ko Y. H., et al. A Novel Fault-Detection Technique of High-Impedance Arcing Faults in Transmission Lines Using the Wavelet Transform [J]. IEEE Transaction on Power Delivery, 2002, 17 (4): 921 - 929.
  • 9Sidhu T S, Singh G, Sachdew M S. A new technique for de- tection and location of arcing faults in power system appa- ratus[q//IEEE Canadian Conference on Electrical and Computer Engineering, 1998( 1 ) : 185-188.
  • 10Sidhu T S, Sachdew M S, Sagoo G S. Detection and loca- tion of low-level arcing faults in metal-clad electrical ap- paratus[C]//Seventh International Conference on Develop- ments in Power System Protection. Amsterdam, Nether- land ,2001 : 157-160.

共引文献83

同被引文献37

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部