期刊文献+

氧化石墨烯/聚氨酯复配改性沥青混合料的性能和机理 被引量:23

Properties and Mechanism of Graphene Oxide/Polyurethane Composite Modified Asphalt Mixture
在线阅读 下载PDF
导出
摘要 将氧化石墨烯/聚氨酯纳米复合材料用于沥青改性,基于最大密度曲线级配理论,按照AC-13型沥青混合料级配设计了一种粗型密实结构的沥青混合料。通过弯曲实验和蠕变实验研究了沥青混合料的弯曲和蠕变变形行为。从沥青混合料的组织结构及破坏机理方面阐述了聚合物和纳米材料在沥青中的改性作用。结果表明,改性剂PU与GO改变了基质沥青的破坏性质,使得改性沥青混合料具有抵抗低温破坏的更加优良的力学性能; GO/PU复配改性沥青从"合金化"和"复合材料化"两个方面提高材料的性能。可见GO/PU复配改性剂的加入提高了沥青混合料路面的低温抗裂性能。 Graphene oxide/polyurethane nanocomposites were used for asphalt modification.Based on the maximum density curve grading theory,a coarse dense asphalt mixture was designed according to the AC-13 asphalt mixture gradation.The bending and creep deformation behavior of asphalt mixture was studied by bending experiment and creep experiment.The modification of polymer and nanomaterials in asphalt was described from the aspects of the structure and failure mechanism of asphalt mixture.The results show that the modifiers PU and GO change the failure properties of the matrix asphalt,making the modified asphalt have better mechanical properties against low temperature damage;GO/PU compound modified asphalt from“alloying”and“composite materialization”two aspects improve the performance of the material.It can be seen that the addition of GO/PU compound modifier improves the low temperature crack resistance of asphalt and asphalt mixture pavement.
作者 于瑞恩 祝锡晶 张茂荣 方长青 YU Rui-en;ZHU Xi-jing;ZHANG Mao-rong;FANG Chang-qing(School of Mechanical Engineering,North University of China,Taiyuan 030051,China;Faculty of Printing,Packaging Engineering and Digital Media Technology,Xi an University of Technology,Xi'an 710048,China)
出处 《科学技术与工程》 北大核心 2018年第33期209-214,共6页 Science Technology and Engineering
基金 山西省高等学校科技创新项目(2017155) 国家自然科学基金(51372200)资助
关键词 纳米材料 复配改性沥青 沥青混合料 低温性能 nanomaterials composite modified asphalt asphalt mixture low-temperature properties
作者简介 第一作者:于瑞恩(1987-),男,汉族,山西人,博士,讲师。E-mail:yuruien@nuc.edu.cn。
  • 相关文献

参考文献4

二级参考文献55

  • 1Kroto H W, Heath J R, O'Brien S C, Curl R F, Smalley R E. C60: Buckminsterfullerene. Nature, 1985, 318:162-163.
  • 2Iijima S. Helical microtubules of graphitic carbon. Nature, 1991, 354:56 58.
  • 3Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Electric field effect in atomically thin carbon films. Science, 2004, 306:666--669.
  • 4Yarris L. Falling into the gap. Berkeley Lab researches take a critical first, step toward grapheme transistors. Science@Berkeley Lab, 2007, November 30. http://www.lbl.gov/Science-Articles/Archive/sabl/2007/Nov/gap.html.
  • 5Geim A K, Novoselov K S. The rise of grapheme. Nat Mater, 2007, 6:183 -191.
  • 6Williams J R, DiCarlo L, Marcus C M. Quantum hall effect in a gate-controlled p-n junction of graphene. Science, 2007, 317: 638--641.
  • 7Service R F. Carbon sheets an atom thick give rise to graphene dreams. Science, 2009, 324:875--877.
  • 8Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi J Y, Hong B H. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 2009, 457:706--710.
  • 9Lee C G, Wei X D, Kysar J W, Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008, 321:385--388.
  • 10Chen J H, Jang C, Xiao S D, Ishigami M, Fuhrer M S. Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat Nanotechnol, 2008, 3:206 209.

共引文献192

同被引文献228

引证文献23

二级引证文献109

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部