摘要
为了提高多类半监督分类的性能,提出了一种基于证据理论的多类协同森林算法(DSM-Co-Forest).首先,通过"多对多"模式将有标记的多类数据随机拆分为多个二类数据集,并以此训练二类基分类器;然后,利用多个基分类器同时对未标记样本进行预测,并利用证据组合算法挑选出可信度较高的未标记样本;最后,将高可信度的未标记样本加入到原训练样本中,以迭代更新其他的基分类器,从而提高分类器的整体性能.通过在一些公共数据集上进行实验,并与其他半监督分类算法进行对比,验证了所提算法的可行性和有效性.
In order to improve the performance of multi-class semi-supervised classification,a new multi-class Co-Forest algorithm named DSM-Co-Forest is proposed on the basis of D-S evidence theory.First,through MVM mode,the multi-labeled data set is randomly split into multiple binary-class data set to train the base classifiers;then,these base classifiers are used to pick out the high reliability samples from the unlabeled data set by using the evidence combination algorithm;finally,adds these selected samples to the original training set to iteratively update the base classifiers so as to improve the overall performance of the multi-class classifier.Through comparing with other semi-supervised classification algorithms on several public data sets,the feasibility and validity of the proposed algorithm are verified.
作者
盛凯
刘忠
周德超
魏启航
冯成旭
SHENG Kai;LIU Zhong;ZHOU De-chao;WEI Qi-hang;FENG Cheng-xu(College of Weapons Engineering,Naval University of Engineering,Wuhan,Hubei 430033,China;PLA 66029 Troop,Xilinguole,Inner-Mongolia 011216,China)
出处
《电子学报》
EI
CAS
CSCD
北大核心
2018年第11期2642-2649,共8页
Acta Electronica Sinica
基金
湖北省自然科学基金(No.2017CFB377)
关键词
半监督学习
多类分类
证据理论
协同森林
semi-supervised learning
multi-class classification
evidence theory
co-forest.
作者简介
盛凯,男,1991年出生,山东兰陵人,海军工程大学兵器工程学院博士研究生.主要研究方向为轨迹数据挖掘、机器学习及复杂系统建模与仿真.E-mail:shengkai0214@foxmail.com;刘忠,男,1963年出生,山东龙口人,海军工程大学兵器工程学院教授、博士生导师.主要研究方向为系统工程、复杂系统建模与仿真、系统集成技术.E-mail:liuzhong531@yahoo.cn;周德超,男,1972年出生,山东荣成人,海军工程大学兵器工程学院副教授,硕士生导师.主要研究方向为复杂系统建模与仿真、数据挖掘、人工智能.E-mail:13397190531@189.cn。