期刊文献+

环量控制襟翼系统流动机理研究

Study on Flow Mechanism of Circulation Control Flap System
在线阅读 下载PDF
导出
摘要 环量控制襟翼系统作为一种先进的襟翼系统,能够提高飞机起飞着陆性能并减小系统的复杂程度。以一种襟翼偏转角为60°的环量控制襟翼系统作为几何模型,采用Fluent求解定常雷诺平均N-S方程组,研究了不同动量系数时的环量控制襟翼系统的升力特性以及环量控制对流动分离的控制效果。计算结果表明:当攻角为0,动量系数为0.05时,ΔCl=1.7,效费比ΔCl/ΔCμ=31.4;随着动量系数增大,环量控制襟翼系统能够有效控制大偏角襟翼后方的流动分离,并在引射作用下使翼型上表面的流动速度加快,翼型环量增加,从而有效提高翼型的升力系数。 Circulation control flap system is an advanced flap system,which can improve the takeoff and landing performance and reduce the complexity of the system.A circulation control flap system with a flap deflection angle of 60°is used as geometric model,both the lifting characteristics of the circulation control flap system in different momentum coefficients and the control effect of the circulation control on the flow separation are studied through solving steady Reynolds-averaged Navier Stokes equations with Fluent software.The simulation results show that when the angle of attack is 0 and the momentum coefficient is 0.05,1.7,31.4;With the increase of the momentum coefficient,the circulation control flap system can control the flow separation behind the deflection flap effectively,accelerate the flow velocity on the upper surface of the airfoil under the influence of ejection effect,and increase the circulation of the airfoil,so that the lift coefficient of the airfoil is improved effectively.
作者 陈翔 唐俊勇 Chen Xiang;Tang Junyong(School of Civil Engineering,Xi′an Technological University,Xi′an 710021,China;School of Computer Science and Engineering,Xi′an Technological University,Xi′an 710021,China)
出处 《机械科学与技术》 CSCD 北大核心 2018年第11期1799-1804,共6页 Mechanical Science and Technology for Aerospace Engineering
关键词 环量控制 动量系数 流动分离 襟翼系统 N-S方程 circulation control momentum coefficient flow separation flap system Navier Stokes equations
作者简介 陈翔(1985-),讲师,硕士,研究方向为结构CAD、计算机软件与理论,xiangchen0801@126.com。
  • 相关文献

参考文献6

二级参考文献120

  • 1任涛,闫永强,梁武科.CFD技术在离心泵优化设计中的应用[J].排灌机械,2007,25(1):25-28. 被引量:22
  • 2Coanda H. Device for Deflecting a Stream of Elastic Fluid Projected into an Elastic Fluid. US Patent No. 2052869, 1936.
  • 3Englar R J, Williams R M. Test techniques for high lift, two-dimensional airfoils with boundary layer and circulation control for application to rotary wing aircraft. Can Aeronaut Space J, 1973, 19(3): 93-108.
  • 4Englar R J. Overview of circulation control pneumatic aerodynamics: Blown force and moment augmentation and modification as applied primarily to fixed-wing aircraft. In: Proceedings of the 2004 NASA/ONR Circulation Control Workshop, Part 1, NASA/Office of Naval Research, 2004. 37-99.
  • 5Englar R J, Marilyn J S, Sean M K, et al. Development of circulation control technology for application to advanced subsonic transport aircraft, Part I: Airfoil development. J Aircraft, 1994, 31 (5): 1160-1177.
  • 6Englar R J, Niebur J S, Gregory S D. Pneumatic lift and control surface technology for high speed civil transports. J Aircraft, 1999, 36(2): 332-339.
  • 7Liu Y. Numerical Simulation of the Aerodynamic Characteristics of Circulation Control Wing Sections. Dissertation of Doctoral Degree. Atlanta: Georgia Institute of Technology, 2003.
  • 8Jones G S, Englar R J. Advances in Pneumatic Controlled High Lift Systems through Pulsed Blowing. AIAA Paper 2003-3411, 2003.
  • 9Jones A, Edstrand A, Chandran M, et al. An Experimental Investigation of Unsteady and Steady Circulation Control for an Elliptical Airfoil. A1AA Paper 2010-346, 2010.
  • 10Rich P, McKinley B, Jones G S. Circulation control in NASA's vehicle systems program. In: Proceedings of the 2004 NASA/ONR Circulation Control Workshop, Part 1, NASA/Office of Naval Research, 2004.1-36.

共引文献61

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部