期刊文献+

使用遗传算法和KSW熵法相结合的CT图像分割 被引量:6

CT lung segmentation based on genetic algorithm KSW method
在线阅读 下载PDF
导出
摘要 为了辅助医生仅能依赖肉眼观察CT图像从而判断CT影像好坏,同时改善在医学图像的分割算法上的性能,提高分割的效率,本文提出了一种使用遗传算法和KSW熵法相结合的CT图像肺部分割方法,该方法通过对医学图像的预处理、构建基于遗传算法的KSW熵方法寻求最优的图像分割解以实现对肺部实质区域的提取、使用改进的Ostu算法获得较好的自适应阈值以实现图像的二值化、通过图像形态学进行图像修补、使用区域生长法对肺部实质性区域的左右部分进行分离。实验结果表明,本文提出的算法在对医学肺部图像的分割时在分割精度上比其他医学图像分割方法都有了一定程度的改善,具有较强的分割自适应性和稳定性。 Regularly,doctors observed CT images by naked eyes to judge whether they were good or not.In order to assist them,meanwhile,to improve segmentation algorithms performance in medical images,this paper proposed the combination of genetic algorithm and KSW entropy method in CT lung image segmentation.The medical image was processed from pre-processing,KSW based on genetic algorithm method was used to get the best segmentation solution for the extraction of lung parenchyma region,the improved Ostu was used in image binaryzation,and image morphing was used for image inpainting,regional growth was used to extract the left and right parts of the pulmonary parenchyma region.The testing results illustrate that the algorithm proposed in this paper has a certain improvement in the segmentation precision than the other methods,and has a strong segmentation self adaptability and stability.
作者 姚立平 潘中良 YAO Liping;PAN Zhongliang(School of Physics and Telecommunications Engineering,South China Normal University,Guangzhou 510006,China)
出处 《电视技术》 2018年第11期1-6,共6页 Video Engineering
基金 广州市科技计划项目 广东省科技计划项目(2016B090918071 2014A040401076)
关键词 遗传算法 KSW熵方法 区域生长 OSTU算法 图像形态学 genetic algorithm KSW entropy method regional growth Ostu algorithm image morphology
作者简介 姚立平(1994—),硕士研究生,研究方向:基于机器视觉的图像处理;潘中良(1966-),博士,教授,研究方向:计算机应用、嵌入式系统设计。
  • 相关文献

参考文献5

二级参考文献89

  • 1Marr D 姚国正等(译).视觉计算理论[M].科学出版社,1988..
  • 2罗希平.生物信息处理:对自动指纹识别和医学图像分割的研究,博士论文[M].中国科学院自动化研究所人工智能实验室,2000..
  • 3TSENG L Y,YANG S B.A genetic clustering algorithm for data with non-spherical-shape clusters[J].Pattern Recognition,2000,33:1 251-1 259.
  • 4ZALIK K R.An efficient K'-means clustering algorithm[J].Pattern Recognition Lett.,2008(2):1-7.
  • 5REDMOND S J,HENGHAN C.A method for initializing the K-means clustering algorithm using kd-trees[J].Pattern Recognition,2007,28:965-973.
  • 6ANDREY P.Selection's relaxation:Genetic algorithms applied to image segmentation[J].Image and Vision Computing,1999,17:175-187.
  • 7GONZALEZ R C,WOODS R E,EDDINS S L.Digital Image Processing Using MATLAB[M].Beijing.Publishing House of Electronics Industry,2005.
  • 8MAULIK U,BANDVOPADHVAY S.Genetic algorithm-based clustering technique[J].Pattern Recognition,2000,33:1 455-1 465.
  • 9KRISHNA K,MURTY M N.Genetic K-means algorithm[J].IEEE Transaction on Systems,Man,and Cybernetics (Part B),1999,29(3):433-439.
  • 10BANDVOPADHVAY S,MAULIK U.An evolutionary technique based on K-means algorithm for optimal clustering in R《'N》[J].Information Sciences,2002,146,221-237.

共引文献146

同被引文献43

引证文献6

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部