期刊文献+

矩形双脊波导传输特性研究 被引量:1

Transmission Characters of Rectangle Double-ridge Waveguide
在线阅读 下载PDF
导出
摘要 为了寻找最佳传输特性的波导结构,通过矩形波导内电磁波的波方程、矩形波导内截止波长特性,结合微扰理论以及时域有限差分法研究矩形波导、双脊波导内电磁波传播特性,计算分析矩形波导、双脊波导截止波长随波导结构尺寸的变化。结果表明:双脊波导的脊间距越小,单模带宽越大,矩形双脊波导的截止波长较同尺寸矩形波导大;模拟的双脊波导内电磁波主模与第一高次模的场结构图显示,在对称双脊波导的脊点处场强变化、能量损失最大。 In order to find a waveguide structure with the best transmission characteristics,by using the electromagnetic(EM)wave equation and the characteristics of the cut-off wavelength in the rectangular waveguide,combined with the perturbation theory and finite difference time domain(FDTD)method,the propagation characteristics of EM waves in a rectangular waveguide or double-ridged waveguide were studied.The relationship between the cut-off wavelength of a rectangular waveguide or double-ridged waveguide and the size of waveguide structure were calculated and analyzed.The results show that the smaller the ridge pitch of the dual-ridged waveguide is,the longer the single-mode bandwidth is,and the cut-off wavelength of a rectangular double-ridged waveguide is larger than that of a rectangular waveguide.The EM field structure diagram of main mode and the first high-order mode of EM wave in the simulated dual-ridged waveguide show that the EM field intensity has the biggest change at the ridge point of a symmetric double-ridged waveguide,and the energy loss is also the largest in the same ridge point.
作者 李龙洲 雷前召 张修兴 LI Longzhou;LEI Qianzhao;ZHANG Xiuxing(School of Mathematics and Physics,Weinan Normal University,Weinan 714099,China)
出处 《济南大学学报(自然科学版)》 CAS 北大核心 2018年第6期516-520,共5页 Journal of University of Jinan(Science and Technology)
基金 国家自然科学基金项目(11304230) 陕西省2017年军民融合研究基金项目(JMR29) 陕西省教育厅2016年度专项科学研究计划项目(16JK1278) 渭南师范学院2018年自然科学研究重点项目(18YKF03) 渭南师范学院2017年自然科学类横向项目(2017HXP14)
关键词 矩形波导 脊波导 微扰理论 时域有限差分法 截止波长 rectangle waveguide ridge waveguide perturbation theory finite difference time domain method cut-off wavelength
作者简介 李龙洲(1962—),男,陕西渭南人。工程师,研究方向为微波测量。E-mail:749877841@qq.com;通信作者:雷前召(1967—),男,河南信阳人。教授,硕士,研究方向为复杂介质中的波传播及信号处理。电话:13571518985,E-mail:leiqzh@126.com。
  • 相关文献

参考文献13

二级参考文献66

共引文献47

同被引文献12

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部