摘要
以周期激励下耦合非光滑BVP系统为例,考察了周期激励频率与系统固有频率之间存在的量级差异,即存在频域上两时间尺度时的耦合效应。由于激励频率远小于系统的固有频率,将整个激励项视为慢变参数,得到慢变参数变化下系统的广义平衡点及其稳定性。在适当参数取值下,系统存在明显的周期簇发行为。利用快慢分析法,并结合转换相图,分析了慢变参数通过不同分岔点及非光滑分界面时的复杂动力学行为及其产生机理。
A coupled non-smooth Bohoffer-Van der Pol(BVP)system with periodic excitation was taken an example,the difference of magnitude between periodic excitation frequency and natural frequency of system was investigated.The difference of magnitude was the coupling effect of two time scales in frequency domain.Because the excitation frequency was much lower than the natural frequency of system,the whole excitation term was considered as a slow-varying parameter.The generalized equilibrium points and its stabilities of system were obtained when the slow-varying parameter varied.The system existed periodic bursting behavior when the value of parameters are appropriate.By combined the fast-slow analysis method and transformed phase portraits,the complex dynamical behavior as well as related mechanisms when the slow-varying parameter crossed different bifurcation points and non-smooth boundary were analyzed.
作者
李晓宁
张正娣
LI Xiaoning;ZHANG Zhengdi(Faculty of Science,Jiangsu University,Zhenjiang 212013,China)
出处
《河南科技大学学报(自然科学版)》
CAS
北大核心
2019年第1期89-94,112,共7页
Journal of Henan University of Science And Technology:Natural Science
基金
国家自然科学基金重点项目(11632008)
国家自然科学基金项目(11472115
11472116)
关键词
非光滑BVP系统
两尺度耦合
簇发振荡
分岔机理
快慢分析法
转换相图
non-smooth BVP system
the coupling of two scales
bursting oscillation
bifurcation mechanism
fast-slow analysis method
transformed phase portrait
作者简介
李晓宁(1994-),女,河南郑州人,硕士生;张正娣(1972-),女,通信作者,江苏丹阳人,教授,博士,博士生导师,主要研究方向为非线性动力学.