期刊文献+

基于特征损失的医学图像超分辨率重建 被引量:10

Super-resolution reconstruction of medical images using feature-based loss
在线阅读 下载PDF
导出
摘要 高分辨率的磁共振图像可以提供更加清晰的解剖图像,从而促进疾病的早期诊断。但是医疗成像系统的固有缺陷,使得高分辨率医学图像的获取面临许多问题,解决这类问题的方法之一就是使用超分辨率重建技术。针对医学图像超分辨率重建问题,设计一个前馈全连接卷积神经网络,网络包括五层卷积层和五个残差块,并且使用基于特征的损失函数,解决了使用均方误差损失函数不符合人视觉感的问题。该方法在网络内部实现图像4倍放大重建,避免了使用反卷积层上采样时出现的棋盘伪影。通过实验验证了方法的有效性,在视觉和数值结果上都有所提高。 High-resolution Magnetic Resonance(MR)images can provide a clearer anatomical image to facilitate early diagnosis of the disease.However,the inherent defects of medical imaging system make the acquisition of high-resolution medical images face many problems,and one of the methods to solve these problems is to use the super-resolution reconstruction technique.In view of the problem of medical image super-resolution reconstruction,a feedforward full connection convolution neural network is designed,which includes five-layer convolution layer and five residual blocks,and the loss function based on feature is also used to solve the problem caused by mean square error loss function which cannot meet the human visual sense.This method realizes the image 4 times magnification reconstruction in the network and avoids the checkerboard artifacts,which are often occurred when using deconvolution layers to up-sample images.The effectiveness of the method is verified by experiments,and both the visual and numerical results are improved.
作者 邢晓羊 魏敏 符颖 XING Xiaoyang;WEI Min;FU Ying(School of Computer Science,Chengdu University of Information and Technology,Chengdu 610225,China;Collaborative Innovation Center for Image and Geospatial Information,Chengdu University of Information and Technology,Chengdu 610225,China)
出处 《计算机工程与应用》 CSCD 北大核心 2018年第20期202-207,218,共7页 Computer Engineering and Applications
基金 四川省科技支撑计划资助项目(No.2015RZ0008) 四川省教育厅重点项目(No.15ZA0186)
关键词 医学图像 超分辨重建 卷积神经网络 特征损失 medical image super-resolution reconstruction convolution neural network feature-based loss
作者简介 邢晓羊(1991—),男,硕士生,研究领域为图形图像,机器学习;魏敏(1978-),男,博士,副教授,研究领域为图像处理及应用、虚拟现实及3D仿真技术,E-mail:weimin@cuit.edu.cn;符颖(1988-),女,博士,副教授,研究领域为图像处理及非参贝叶斯在图像复原中的应用术。
  • 相关文献

参考文献1

二级参考文献10

  • 1Sung Cheol Park,Min Kyu Park,Moon Gi Kang.Super-resolution image reconstruction: a technical overview. IEEE Signal Processing Magazine . 2003
  • 2Farsiu, Sina,Robinson, M. Dirk,Elad, Michael,Milanfar, Peyman.Fast and robust multiframe super resolution. IEEE Transactions on Image Processing . 2004
  • 3Freeman WT,Jones TR,Pasztor EC.Example-based super-resolution. IEEE Computer Graphics and Applications . 2002
  • 4Jianchao Yang,John Wright,Thomas S. Huang,Yi Ma.Image super-resolution via sparse representation. IEEE Transactions on Image Processing . 2010
  • 5Junzhou Huang,Tong Zhang.The benefit of group sparsity. The Annals of Statistics . 2010
  • 6Shutao Li,Haitao Yin,Leyuan Fang.Group-Sparse Representation With Dictionary Learning for Medical Image Denoising and Fusion. IEEE Transactions on Biomedical Engineering . 2012
  • 7Aharon, M.,Elad, M.,Bruckstein, A.-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation. Signal Processing . 2006
  • 8S. S. Channappayya,A. C. Bovik,R. W. Heath.Rate Bounds on SSIM Index of Quantized Images. IEEE Transactions on Image Processing . 2008
  • 9Majumdar, Angshul,Ward, Rabab K.Fast group sparse classification. Canadian Journal of Electrical and Computer Engineering . 2009
  • 10M. Elad,M. Aharon.Image denoising via learned dictionaries and sparse representation. IEEE Computer Society Conference on Computer Vision and Pattern Recognition . 2006

共引文献5

同被引文献61

引证文献10

二级引证文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部