期刊文献+

协作频谱感知中基于距离准则的量化器设计 被引量:2

Distance criterion-based quantizer design for cooperative spectrum sensing
在线阅读 下载PDF
导出
摘要 针对感知节点能量和汇报信道带宽受限的认知无线电网络中协作频谱感知问题,提出了一种基于距离准则的优化量化器设计方法。首先,计算融合中心接收的量化数据的巴氏距离(BD, Bhattacharyya distance)为性能准则,构建量化器的优化数学模型,采用粒子群优化算法求解得出最优量化阈值。根据融合中心接收的各感知节点的量化数据,构造对数似然比检测器,对是否存在主用户信号做出决策,最后推导了未量化条件下能量检测器的性能上界。仿真实验结果与已有方法对比,所提出的3 bit量化方法的性能接近能量检测器的性能上界,在获得类似检测性能的前提下降低了对通信带宽的需求。 In terms of sensing node’s energy and reporting channel’s bandwidth constrains problem for cooperative spectrum sensing in cognitive radio networks,an optimal quantizer design method based on distance criterion was proposed.First of all,the Bhattacharyya distance of received quantized data at the fusion center(FC)was calculated as performance criteria,the optimization mathematical model of the quantizer was constructed,and the optimum quantization thresholds were obtained by using particle swarm optimization algorithm.According to received sensing nodes’quantized data at the FC,a log-likelihood ratio detector was constructed to decide the presence or absence of primary user signal,the upper bound to sensing performance of energy detector that without quantization was derived.Compared with the existing methods in literatures,the performance of proposed 3-bit quantization method approaches to the upper bound performance of energy detector,under the premise of obtaining comparable detection performance,the requirement of communication bandwidth is reduced.
作者 付元华 贺知明 FU Yuanhua;HE Zhiming(School of Information and Communication Engineering,University of Electronic Science and Technology of China,Chengdu 611731,China;Institute of Electronic and Information Engineering of University of Electronic Science and Technology of China in Guangdong,Dongguan 523808,China)
出处 《通信学报》 EI CSCD 北大核心 2018年第9期49-56,共8页 Journal on Communications
基金 广东省东莞市社会科技发展基金资助项目(No.2016108101020)~~
关键词 优化量化 距离准则 粒子群优化算法 协作频谱感知 optimal quantization distance criterion particle swarm optimization algorithm cooperative spectrum sensing
作者简介 通信作者:付元华(1987-),男,四川巴中人,电子科技大学博士生,主要研究方向为认知无线传感器网络、频谱感知技术。f_yuanhua@163.com;贺知明(1972-),男,四川乐山人,博士,电子科技大学教授、博士生导师,主要研究方向为雷达系统与信号处理。
  • 相关文献

参考文献5

二级参考文献99

  • 1申晓红,王海燕,赵宝珍,张奎.基于混沌序列的水声跳频通信系统研究[J].西北工业大学学报,2006,24(2):180-184. 被引量:6
  • 2李燕君,王智,孙优贤.资源受限的无线传感器网络基于衰减信道的决策融合[J].软件学报,2007,18(5):1130-1137. 被引量:19
  • 3Mitola J. Cognitive radio: Making software radios more personal [J]. IEEE Personal Communications, 1999, 6(4): 13-18.
  • 4Haykin S. Cognitive radio: Brain-empowered wire-less communications [J]. IEEE Journal on Selected Areas in Communications, 2005, 23(2): 201-220.
  • 5Cabric DI Mishra S, and Brodersen R. Implementation issues in spectrum sensing for cognitive radios [C]. Proc. Asilomar Conf. on Signals, Systems and Computers, Pacific Grove, California, Nov. 2004, Vol. 1: 772-776.
  • 6Digham F F, Alouini M S, and Simon M K. On the energy detection of unknown signals over fading channels [J]. IEEE Transactions on Communications, 2007, 55(1): 21-24.
  • 7Kim K. Cyclostationary approaches to signal detection and classification in cognitive radio [C]. 2nd IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, Dublin, 17-20 April 2007: 212-215.
  • 8Youn Youngwoo, Jeon Hyoungsuk, Jung Hoiyoon, and Lee Hyuckjae. Discrete wavelet packet transform based energy detector for cognitive radios [C]. IEEE 65th Vehicular Technology Conference, Dublin, 22-25 April 2007: 2641-2645.
  • 9Park J, Hut Y, Song T J, Kim K, Lee J, Lim K, Lee C H, Kim H S, and Laskar J. Implementation issues of a wideband multi-resolution spectrum sensing (MRSS) technique for cognitive radio (CR) systems [C]. 1st International Conference on Cognitive Radio Oriented Wireless Networks and Communications, Mykonos Island, 8-10 June 2006: 1-5.
  • 10Quan Zhi, Cui Shuguang, and Aayed A H. Optimal linear cooperation for spectrum sensing in cognitive radio networks [J]. IEEE Journal of Selected Topics in Signal Processing, 2008, 2(1): 28-40.

共引文献20

同被引文献22

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部