期刊文献+

基于GPU的局部指纹频谱特性估计的实现 被引量:1

Implementation of the local fingerprint spectrum feature estimation based on GPU via CUDA
在线阅读 下载PDF
导出
摘要 针对已知指纹图像增强系统中指纹局部频谱特性估计的计算负荷大,基于CPU实现后执行时间较长的问题,提出了一种基于GPU的CUDA并行实现方法来提高运算速度.利用不同CUDA线程块来并行处理不同的局部指纹图像,同时线程块中的多线程对相应局部指纹的频谱特性估计进行并行优化,从而完成整个指纹图像的局部频谱特性估计的优化.通过对FVC2000数据库中大量的指纹图像进行测试,得到相应的执行时间并与其基于CPU实现的执行时间相比较.结果显示:通过该基于GPU的CUDA并行实现方法,局部指纹频谱特性估计的执行时间显著减少,从而可以提高已知指纹图像增强系统的运算速度. Aiming at the long execution time of the local spectrum feature estimation based on CPU in the existing fingerprint enhancement system,an implementation method based on parallel GPU programming is proposed to reduce the execution time.Different CUDA blocks are invoked to process different local fingerprints in parallel.And the multi-threads in each CUDA block are fully utilized to optimize the local spectrum feature estimation in parallel.Large number of fingerprint images in the FVC2000 database are tested and the results show that compared with the CPU-based implementation method,the execution time of the local fingerprint spectrum feature estimation is significantly reduced using GPU-based implementation method.It indicates that the GPU-based implementation method can be applied to the fingerprint enhancement system to improve the computing speed which will make it more applicable.
作者 南余荣 王福良 NAN Yurong;WANG Fuliang(College of Information Engineering,Zhejiang University of Technology,Hangzhou 310023,China)
机构地区 信息工程学院
出处 《浙江工业大学学报》 CAS 北大核心 2018年第5期492-495,共4页 Journal of Zhejiang University of Technology
关键词 指纹 图像增强 CUDA编程 GPU 并行运算 fingerprint image enhancement CUDA programming GPU parallel programming
作者简介 南余荣(1966—),男,浙江乐清人,教授,博士,研究方向为电力传动及其自动化,E-mail:nyr@zjut.edu.cn.
  • 相关文献

参考文献4

二级参考文献20

  • 1吴恩华,柳有权.基于图形处理器(GPU)的通用计算[J].计算机辅助设计与图形学学报,2004,16(5):601-612. 被引量:228
  • 2MEMBARTH R,HANNIG F,TEICH J. Frameworks for GPU accelerators:A comprehensive evaluation using 2D/3D image registration more authors[A].SASP,San Diego,CA,2011.78-81.
  • 3LOWE D G. Distinctive image features from scale-invariant keypoints[J].{H}International Journal of Computer Vision,2004,(02):91-110.doi:10.1023/B:VISI.0000029664.99615.94.
  • 4SINHA S,FRAHM J M,POLLEFEYS M. Feature tracking and matching in video using programmable graphics hardware[J].{H}Machine Vision and Applications,2011,(01):207-217.
  • 5ADAM H,RADOVAN J,ROMAN J. Real-time object detection on CUDA[J].Journal of Real-Time Image Processin,2011,(03):159-170.
  • 6MIKOLAJCZYK K,SCHMID C. Scale & affine invariant interest point detectors[J].{H}International Journal of Computer Vision,2004,(01):63-86.
  • 7HEYMANN S,MULLER K,SMOLIC A. SIFT implementation and optimization for general-purpose GPU[A].Visualization and Computer Vision,2007.317-322.
  • 8HUANG Y,LIU J S,TU M S. Research on CUDA-based SIFT registration of SAR image[A].Tianjin,China,2011.100-104.
  • 9FISCHLER M A,BOLLES R C. Random sample consensus:A paradigm for model fitting with applications to image analysis and automated cartography[J].{H}Communications of the ACM,1981,(06):381-395.
  • 10NICKOLLS J,BUCK I,GARLAND M. Scalable parallel programming with CUDA[J].Queue,2008,(02):40-53.

共引文献31

同被引文献9

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部