期刊文献+

Superconvergence analysis of bi-k-degree rectangular elements for two-dimensional time-dependent Schrodinger equation 被引量:3

在线阅读 下载PDF
导出
摘要 Superconvergence has been studied for long, and many different numerical methods have been analyzed. This paper is concerned with the problem of superconvergence for a two-dimensional time-dependent linear Schr?dinger equation with the finite element method. The error estimate and superconvergence property with order O(hk+1)in the H1norm are given by using the elliptic projection operator in the semi-discrete scheme. The global superconvergence is derived by the interpolation post-processing technique. The superconvergence result with order O(hk+1+ τ2) in the H1norm can be obtained in the Crank-Nicolson fully discrete scheme. Superconvergence has been studied for long, and many different numerical methods have been analyzed. This paper is concerned with the problem of superconvergence for a two-dimensional time-dependent linear Schr?dinger equation with the finite element method. The error estimate and superconvergence property with order O(h^(k+1))in the H^1 norm are given by using the elliptic projection operator in the semi-discrete scheme. The global superconvergence is derived by the interpolation post-processing technique. The superconvergence result with order O(h^(k+1)+ τ~2) in the H^1 norm can be obtained in the Crank-Nicolson fully discrete scheme.
出处 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2018年第9期1353-1372,共20页 应用数学和力学(英文版)
基金 Project supported by the National Natural Science Foundation of China(No.11671157)
作者简介 Corresponding author,E-mail:yanpingchen@scnu.edu.cn
  • 相关文献

参考文献4

二级参考文献50

  • 1Zhong-ci SHI~1 Xue-jun XU~(1+) Yun-qing HUANG~2 ~1 LSEC,Institute of Computational Mathematics,Academy of Mathematics and Systems Science,Chinese Academy of Sciences,Beijing 100080,China,~2 Hunan Key Laboratory for Computation and Simulation in Science and Engineering,Institute for Computational and Applied Mathematics,Xiangtan University,Xiangtan 411105,China.Economical cascadic multigrid method (ECMG)[J].Science China Mathematics,2007,50(12):1765-1780. 被引量:14
  • 2CHEN ChuanMiao,HU HongLing,XIE ZiQing,LI ChenLiang.Analysis of extrapolation cascadic multigrid method(EXCMG)[J].Science China Mathematics,2008,51(8):1349-1360. 被引量:23
  • 3DU Qiang,MING PingBing.Cascadic multigrid methods for parabolic problems[J].Science China Mathematics,2008,51(8):1415-1439. 被引量:7
  • 4Zhong-ci Shi, Xue-jun Xu (State Key Laboratory of Scientific and Engineering Computing, Institute of Computational Mathematics, Chinese Academy of Sciences, Beijing 100080, China).CASCADIC MULTIGRID FOR PARABOLIC PROBLEMS CASCADIC MULTIGRID FOR PARABOLIC PROBLEMS[J].Journal of Computational Mathematics,2000,18(5):551-560. 被引量:18
  • 5陈传淼,谢资清,李郴良,胡宏伶.新外推多网格法研究(英文)[J].湖南师范大学自然科学学报,2007,30(2):1-5. 被引量:10
  • 6Delfour M,Fortin M,Payre G.Finite-difference solution of a non-linear Schrodinger equation[J].Journal of Computational Physics,1981,44(12):277-288.
  • 7Qhannes Karakashian,Charalambos Makridakis.A space-time finite element method for The nonlinear Schrodinger equation:the discontiouous Galerkin method[J].Mathematics of Computation,1998,67(1):479-499.
  • 8Yunqing Huang,Nianyu Yi.The Superconvergent Cluster Recovery Method[J]. Journal of Scientific Computing . 2010 (3)
  • 9J. Alberty,C. Carstensen,S. A. Funken,R. Klose.Matlab Implementation of the Finite Element Method in Elasticity[J]. Computing . 2002 (3)
  • 10H. Blum,Q. Lin,R. Rannacher.Asymptotic error expansion and Richardson extranpolation for linear finite elements[J]. Numerische Mathematik . 1986 (1)

共引文献17

同被引文献13

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部