期刊文献+

基于卷积神经网络的城管案件图像分类方法 被引量:10

Method of urban management cases' image classification based on convolutional neural network
在线阅读 下载PDF
导出
摘要 以智慧城市管理系统中上报的案件图像为研究对象,利用卷积神经网络能够自行学习图像特征的优势,提出一种改进的深层卷积神经网络算法,并利用该算法对智慧城市管理系统(下简称"智慧城管")的案件图像进行快速精确分类,从而完成城市管理系统中案件的自动分类。采用ZCA白化处理降低图像数据特征之间的相关性;搭建八层卷积神经网络对白化后的图像进行分类,并在卷积层采用线性纠正单元(Re LU)加速训练过程,在pooling层利用dropout技术防止算法过拟合;在网络精调阶段采用BP(Back Propagation)算法进行优化,提高算法的鲁棒性。基于上述方法对道路交通类和市容环境类两类案件图像进行二分类实验,平均精度达到97.5%,F1-Score达到0.98,性能超过了LSVM、SAE以及传统的CNN等方法;同时该方法又对电动车乱摆放类、乱扔垃圾类、机动车违章停放类、垃圾桶周围脏乱类共四类案件进行四分类实验,平均精度为90.5%,F1-Score为0.91,性能依然超过了LSVM、SAE以及传统的CNN等方法。 In this paper,an improved deep Convolution Neural Network(CNN)algorithm is proposed to classify the urban management cases’images in city management system.CNN can extract the image features automatically.The procedure can be divided into three main stages.Initially,ZCA-whitening is used to reduce the correlation of the images.Then,an eight-layer CNN model is set up to classify the images processed by ZCA-whitening.In convolution layer,ReLU is employed to speed up the training phase,and dropout is used to prevent overfitting in pooling layer.Finally,BP algorithm is introduced to improve the robustness of algorithm in fine-tuning phase.The method achieves about 97.5%accuracy and the F1-Score is 0.98 on two classes’images of traffic and environment.The performance exceeds the LSVM,SAE and the usual CNN algorithm.Also,it tests on four classes images of electric-bicycles,rubbish,cars and dustbins,the accuracy is 90.5%,F1-Score is 0.91,and the performance still exceeds the LSVM,SAE and the usual CNN algorithm.
作者 杨浩 李灵巧 杨辉华 刘振丙 潘细朋 YANG Hao;LI Lingqiao;YANG Huihua;LIU Zhenbing;PAN Xipeng(School of Computer and Information Security,Guilin University of Electronic Technology,Guilin,Guangxi 541004,China;Automation School,Beijing University of Posts and Telecommunications,Beijing 100876,China)
出处 《计算机工程与应用》 CSCD 北大核心 2018年第10期242-248,266,共8页 Computer Engineering and Applications
基金 广西重点研发计划项目(桂科AB16380293) 国家自然科学基金资助项目(No.21365008 No.61562013)
关键词 智慧城管 图像分类 卷积神经网络 零相位分量分析(ZCA)白化 DROPOUT ReLU urban management image classification Convolution Neural Network(CNN) Zero-phase Component Analysis(ZCA)-whitening dropout ReLU
作者简介 杨浩(1990—),男,硕士研究生,研究领域为机器学习。;杨辉华(1972—),男,教授,博导,研究领域为机器学习、光谱及图像处理、最优化方法,E-mail:yhh@bupt.edu.cn。
  • 相关文献

参考文献2

二级参考文献23

  • 1明冬萍,骆剑承,周成虎,王晶.基于简化随机场模型的高分辨率遥感影像分割方法[J].计算机工程与应用,2004,40(26):28-30. 被引量:4
  • 2明冬萍,骆剑承,沈占锋,汪闽,盛昊.高分辨率遥感影像信息提取与目标识别技术研究[J].测绘科学,2005,30(3):18-20. 被引量:109
  • 3赵金山,狄增如,王大辉.北京市公共汽车交通网络几何性质的实证研究[J].复杂系统与复杂性科学,2005,2(2):45-48. 被引量:45
  • 4陆化普,石冶.Complexity of Public Transport Networks[J].Tsinghua Science and Technology,2007,12(2):204-213. 被引量:13
  • 5Hideki N, Mahdad N S, Eiji K. MRF-based Texture Segmentation using Wavelet Decomposed Images [ J ]. Pattern Recognition ,2002, 35 (4) : 771-782.
  • 6Tseng D C, Lai C C . A Genetic Algorithm for MRF-based Segmentation of Muhi-spectral Textured Images [ J ]. Pattern Recognition Letters. 1999, 20(14) : 1499-1510.
  • 7Blake A, Zisserman A. Visual Reconstruction [ M ]. Cambridge, MA : The MIT Press, 1987.
  • 8Chellappa R. Two-Dimensional Discrete Gaussian Markov Random Field Models for Image Processing [C] //Kanal L N, Rosenfeld A. Progress in Pattern Recognition. Amsterdam: Elsevier Science Publishers BV, 1985, 2: 79-112.
  • 9Manjunath B S, Chellappa R. Unsupervised Texture Segmentation Using Markov Random Field Models [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1991, 13(5) : 478-482.
  • 10Burges C J C. A Tutorial on Support Vector Machines for Pattern Recognition [ J ]. Data Mining and Knowledge Discovery, 1998, 2: 121-167.

共引文献235

同被引文献79

引证文献10

二级引证文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部