摘要
Pure WC-6%Co nanosized composite powders were synthesized via a low-temperature method.The effects of carbon source on microstructure characteristic of composite powders were investigated,and the effects of heat-treatment parameter on carbon content of composite powders were also discussed.The results of SEM and XRD revealed that the carbon decomposing from glucose was more active than carbon black.Therefore,WC-Co nanosized composite powders could be synthesized at 900°C for 1 h under a hydrogen atmosphere.The individual WC grains were bonded together into a long strip under the action of cobalt.The results of carbon analysis revealed that the total carbon content decreased with the increase of the temperature in the range of 800-1000°C.Moreover,the total carbon content and the compounded carbon increased with the increase of the flow rate of H2 in the range of 1.1-1.9 m3/h.
利用一种低温合成方法制备纯净的WC-6%Co纳米复合粉末。研究碳源和热处理工艺参数对复合粉显微组织和碳含量的影响。XRD和SEM分析结果表明:由葡萄糖分解出的碳比碳黑具有更高的活性,在氢气氛中加热至900℃并保温1 h可以合成得到纳米晶WC-Co复合粉。复合粉中的单个WC颗粒被Co相互粘结成细长的带状。碳含量分析结果表明:当热处理温度在800~1000℃范围内时,总碳含量随着温度的升高而降低;当氢气流量在1.1~1.9 m^3/h范围内时,总碳含量和化合碳含量随着氢气流量的增大而增加。
基金
Project(51274107)supported by the National Natural Science Foundation of China
Project(2015FB127)supported by the Yunnan Natural Science Foundation,China
Project(2016P20151130003)supported by Analysis Foundation of Kunming University of Science and Technology,China
作者简介
Corresponding author:Jian-hong YI;Tel:+86-871-65916977;E-mail:yijianhong2007@sohu.com