期刊文献+

基于视频的矿井中人体运动区域检测 被引量:2

Video-based Detection of Human Motion Area in Mine
在线阅读 下载PDF
导出
摘要 将人体运动区域检测技术应用到矿井视频中可以检测矿井下矿工的运动情况,进一步可以智能检测矿工的异常行为,根据反馈的检测结果实现实时报警和联动控制,减少矿井事故的发生。针对矿井场景下的人体运动区域检测,提出了一种实现人体运动区域提取的融合方法 TD-HF(Time Difference and Haar Feature),该方法融合了时间差分法和基于Haar特征的人体检测算法。实验表明,所提方法在检测率和误识率方面均比单纯的基于AdaBoost算法的分类器更胜一筹,并且在检测时间上满足实时性要求,适用于矿井视频这种特殊场景下的人体运动区域检测。 The human motion area detection technology applied to the mine video can detect motion of miners and intelligently detect abnormal behavior of miners through further analysis.According to the results of feedback detection to achieve real-time alarm and linkage control,it obviously reduces the occurrence of mine accidents.This paper proposed a hybrid method TD-HF(Time Difference and Haar Feature)for extracting human motion area,which integrates the time difference method and the human detection algorithm based on Haar feature especially under the condition of mine.The experiment shows that this method is better than the simple classifier based on AdaBoost algorithm in the detection rate and false recognition rate,at the same time,it can satisfy the real-time requirements in detection time.It’s applicable to the detection of human motion area under the special condition of mine video.
作者 李珊 饶文碧 LI Shan ;RAO Wen-bi(School of Computer Science and Technology,Wuhan University of Technology,Wuhan 430070,China)
出处 《计算机科学》 CSCD 北大核心 2018年第4期291-295,共5页 Computer Science
基金 国家自然科学基金项目(61601337) 湖北省重大科技创新计划项目(2015BCE068)资助
关键词 人体运动区域 时间差分法 TD-HF ADABOOST Human motion region Time difference method TD-HF AdaBoost
作者简介 李珊(1993-),女,硕士生,主要研究方向为数据挖掘、图形图像处理,E-mail:chonger@whut.edu.cn;(通信作者)饶文碧(1967-),女,教授,博士生导师,主要研究方向为普适计算、机器学习与数据挖掘、计算机图形图像处理方法与技术,E-mail:wbrao@whut.edu.cn。
  • 相关文献

参考文献3

二级参考文献17

  • 1代科学,李国辉,涂丹,袁见.监控视频运动目标检测减背景技术的研究现状和展望[J].中国图象图形学报,2006,11(7):919-927. 被引量:170
  • 2BradskiG,KaeblerA.学习OpenCV(中文版)[M].于仕琪,刘瑞帧,译.北京:清华大学出版社,2009.
  • 3SHIN J, KIM S, KANG S, et al. Optical flow-based real- time object tracking using non-prior training active feature model [ J ]. ELSEVIER Real-Time Imaging, 2005 ( 1 ) : 204 -218.
  • 4DENMAN S, FOOKES C, simultaneous computation of flow for object tracking [ C ] Techniques and Applications, SRIDHARAN S. Improved motion detection and optical . Digital Image Computing: 2009.
  • 5KALAL Z, MATAS J, MIKOLAJCZYK K. Online learning of robust object detectors during unstable tracking[ C]. 3rd On-line Learning for Computer Vision Workshop 2009.
  • 6KIM K, CHALIDABHONGSE T, HARWOOD D, et al. Real-time foreground-background segmentation using codebook model[ J]. ELSEVIER Real-Time Imaging, 2005 (11): 172-185.
  • 7FU C, CHUN JC, CHI JL. A linear-time component- labeling algorithm using contour tracing technique [ J ]. Computer Vision and Image Understanding, 2004 (93) : 206 -220.
  • 8LUCAS B, KANADE T. An technique with an application International Joint Conference ( IJCAI), 1981. lteratlve image registration to stereo vision [ C ]. 7th on Artificial Intelligence.
  • 9BERGEN J, BURT P, HINGORANI R, et al. Computing two motions from three frames [ C]. 3rd Int. Conf. on Computer Vision, 1990.
  • 10BOUGUET J. Pyramidal implementation of the Lucas Kanade feature tracker description of the algorithms [ C ].OpenCV Documentation, Micro-Processor Research Labs, Intel Corporation: 1999.

共引文献68

同被引文献26

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部