期刊文献+

磁共振图像的原始-对偶近似迭代重建算法 被引量:3

Proximal iterative reconstruction algorithm for MR images based on primal-dual framework
在线阅读 下载PDF
导出
摘要 基于压缩感知(CS)的磁共振成像(MRI)是一种利用磁共振(MR)图像的稀疏性的快速成像技术,经典CS-MRI重建数学模型是在包含线性合成非平滑正则约束下的最优化问题。针对重建模型中的线性合成正则项提出利用原始-对偶框架同时求解原始-对偶问题,对原始-对偶问题的增广Lagrangian形式求解其最优解,提出了一种原始-对偶迭代重建算法;对于非平滑正则项的处理,提出使用Moreau包络进行平滑近似,然后利用近似算子得到平滑近似函数的导数形式。用体模图像和真实MR图像,与共轭梯度算法(CG)、算子分离算法(TVCMRI)、变量分离算法(Rec PF)和快速混合分离算法(FCSA)进行比较,表明该算法重建效果最好,算法复杂度与最快的FCSA算法相当。 Compressed Sensing(CS)based Magnetic Resonance Imaging(MRI)is a fast imaging technology which exploits the sparsity of Magnetic Resonance(MR)images.In view of the linear composite regularization term in the canonic reconstruction model for CS-MRI,a primal-dual iterative reconstruction algorithm is proposed which solves augmented Lagrangian of the primal and dual problems iteratively.The Moreau envelope is utilized to cope with the nonsmooth regularization terms followed by a gradient calculation step using the approximate operator.Experiment results of phantom and real MR images show that compared with Conjugate Gradient algorithm(CG),operator splitting algorithm(TVCMRI),variable splitting algorithm(RecPF)and fast composite splitting algorithm(FCSA),the algorithm gives the best reconstruction effect.In addition,the algorithm complexity compares favorably with FCSA which is the fastest algorithm so far.
作者 刘晓晖 张鑫媛 路利军 冯前进 陈武凡 LIU Xiaohui;ZHANG Xinyuan;LU Lijun;FENG Qianjin;CHEN Wufan(School of Biomedical Engineering,Southern Medical University,Guangzhou 510515,China)
出处 《计算机工程与应用》 CSCD 北大核心 2018年第8期28-35,共8页 Computer Engineering and Applications
基金 国家自然科学基金(No.81501541 No.81601564) 国家重点研发专项(No.2016YFC0104003)
关键词 快速磁共振成像 压缩感知 原始-对偶 近似算子 fast magnetic resonance imaging compressed sensing primal-dual approximate operator
作者简介 刘晓晖(1986—),女,博士研究生,研究方向为图像处理、医学图像重建;张鑫媛(1985—),女,博士,讲师,研究方向为医学图像处理、医学图像去噪;路利军(1984—),男,博士,副教授,研究方向为医学图像处理、PET成像与分析;冯前进(1974—),男,博士,教授,研究方向为医学图像分析、医学成像方法研究;通讯作者:陈武凡(1949—),男,教授,研究方向为医学图像处理、模式识别、神经网络,E-mail:chenwf@fimmu.com。
  • 相关文献

参考文献2

二级参考文献32

  • 1Zhou Y,Wang J,Sawahashi M.Downlink transmissionof broadband OFCDM systems—part I:hybrid detection[J].IEEE Transactions on Communications,2005,53(4):718-729.
  • 2Barhumi I,Leus G,Moonen M.Optimal training designfor MIMO OFDM systems in mobile wireless channels[J].IEEE Transactions on Signal Processing,2003,51(6):1615-1624.
  • 3Maaref A,Aissa S.Impact of spatial fading correlationand keyhole on the capacity of MIMO systems withtransmitter and receiver CSI[J].IEEE Transactions on WirelessCommunications,2008,7(8):3218-3229.
  • 4Li Weichang,Preisig J C.Estimation of rapidly time-varyingsparse channel[J].IEEE J Ocean Eng,2007,32(4):927-939.
  • 5Donoho D L.Compressed sensing[J].IEEE Transactions onInformation Theory,2006,52(4):1289-1306.
  • 6Candes E J.Compressive sampling[C].Proceedings of theInternational Congress of Mathematics.Madrid,Spain:theEuropean Mathematical Society,2006:1433-1452.
  • 7Qi Chenhao,Wu Lenan.A hybrid compressing sensingalgorithm for sparse channel estimation in MIMO OFDMsystems[J].IEEE Transactions on Signal Processing,2011,58(1):3488-3491.
  • 8Bajwa W U,Haupt J,Sayeed A M,et al.Compressedchannel sensing:a new approach to estimating sparsemultipath channels[J].Proceedings of the IEEE,2010,98(6):1058-1076.
  • 9Baraniuk R G.Compressive sensing[J].IEEE Signal ProcessingMagazine,2007,24(4):118-120.
  • 10Cai T,Wang L,Xu G W.New bounds for restricted isometryconstants[J].IEEE Transactions on Information Theory,2010,56(9):4388-4394.

共引文献11

同被引文献18

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部