期刊文献+

基于Spark GraphX和社交网络大数据的用户影响力分析 被引量:10

Analysis of user influence based on social network big data and Spark GraphX
在线阅读 下载PDF
导出
摘要 利用社交网络大数据进行用户影响力分析,有助于识别网络环境中影响力强的用户实现其社会和商业价值。传统方法无法高效处理海量社交网络数据,定量准确地分析用户影响力,为解决该问题,提出一种基于PageRank算法的改进的用户影响力评价模型。综合考虑了用户连接程度和活跃程度,并以支持大规模并行图计算的Spark Graph X为工具,快速高效地实现了微博用户影响力的定量分析与评价。实验结果表明,所提方法效率更高,得到的用户影响力结果更接近真实情况。 To analyze user influence based on big data from social network is helpful for recognizing users with good impact on the Internet and realizing their social and economic value.Traditional methods can not process massive social network data efficiently and analyze user influence quantitatively and precisely.To solve these problems,this paper proposed an advanced model of user influence evaluation,originating from classic PageRank algorithm,which took not only user connectivity but activity into consideration,and used Spark GraphX which supported massive parallel computing as a tool and realized analyzing influence of Weibo users quantitatively and precisely.Experiment shows that the approach proposed in this paper is a more efficient method with more precise results.
作者 文馨 陈能成 肖长江 Wen Xin;Chen Nengcheng;Xiao Changjiang(State Key Laboratory of Information Engineering in Surveying,Mapping&Remote Sensing,Wuhan University,Wuhan 430079,China;Collaborative Innovation Center of Geospatial Technology,Wuhan University,Wuhan 430079,China)
出处 《计算机应用研究》 CSCD 北大核心 2018年第3期830-834,共5页 Application Research of Computers
基金 湖北省自然科学基金创新群体项目(2016CFA003) 国家自然科学基金资助项目(41301441) 国家"863"计划资助项目(2013AA01A608)
关键词 数据挖掘 社交网络大数据 SPARK GraphX 用户影响力分析 data mining big data from social network Spark GraphX analysis of user influence
作者简介 文馨(1993-),女,湖南益阳人,硕士研究生,主要研究方向为大数据分析、智慧城市(XinWen_668@whu.edu.cn);陈能成(1974-),男,教授,博士,主要研究方向为对地观测传感网、时空大数据、动态实时网络GIS和智慧城市;肖长江(1990-),男,博士研究生,主要研究方向为传感网实时动态GIS、智慧城市
  • 相关文献

参考文献6

二级参考文献64

  • 1Kempe D, Kleinberg J, Tardos E. Maximizing the spread of influence in a social network//Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Washington, USA, 2003: 137-146.
  • 2Chen Wei, Wang Ya Jun, Yang Si Yu. Efficient influence maximization in social networks//Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Dis covery and Data Mining. Paris, France, 2009:199 208.
  • 3Young H P. The diffusion of innovations in social net works//Blume L, Durlauf S. The Economy as a Complex System III. USA: Oxford University Press, 2003:1-19.
  • 4Watts D J. A simple model of global cascades on random net works. National Academy of Sciences, 2002, 99(9): 5766- 5571.
  • 5Goldenberg J, Libai B, Muller E. Talk of the network: A complex systems look at the underlying process of word-of- mouth. Marketing Letters, 2001, 12(3): 211-223.
  • 6Estevez Pablo A, Vera Pablo, Saito Kazumi. Selecting the most influential nodes in social networks//Proceedings of the International Joint Conference on Neural Networks. Orlando, Florida, USA, 2007:2397-2402.
  • 7Suri N Rama, Narahari Y. Determining the top k nodes in social networks using the shapely value (Short Paper)//Proceedings of the 7th International Joint Con{erence on Autono mous Agents and Multiagent Systems. Estoril, Portugal, 2008:1509-1512.
  • 8Wang YiTong, Feng XiaoJun. A potential-based node selection strategy for influence maximization in a social network//Proceedings of the 5th International Conference on Advanced Data Mining and Applications. Bering, China, 2009: 350-361.
  • 9Leskovec J, Huttenlocher D, Kleinberg J. Signed networks in social media//Proceedings of the 28th International Conference on Human Factors in Computing Systems. Atlanta, USA, 2010: 1361 -1370.
  • 10Sun Shi-Wei, Ling Lun-Jiang, Zhang Nan, Li Guo-Jie, Chen Run-Sheng. Topological structure analysis of the proteinprotein interaction network in budding yeast. Nucleic Acids Research, 2003, 31(9): 2443-2450.

共引文献128

同被引文献113

引证文献10

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部