期刊文献+

小菜蛾饲料品系转食寄主植物的适合度及其硫苷代谢相关基因表达

Fitness and Glucosinolate Catabolism-related Gene Expression Upon Feeding on Natural Host Plant of Plutella xylostella Raised from Artificial Diet
在线阅读 下载PDF
导出
摘要 硫代葡萄糖苷硫酸酯酶(GSS)及其修饰因子(SUMF1)是小菜蛾代谢十字花科植物化学防御物质硫苷的关键因子,但其在人工饲料品系小菜蛾适应寄主植物方面的功能研究中鲜有报道。本研究检测了硫苷代谢相关基因GSS和SUMF1在2种人工饲料品系小菜蛾(AD和G88)不同发育阶段的表达模式,发现GSS基因在2种饲料品系间的表达模式较为相似,GSS1和GSS2均在3龄和4龄幼虫中大量表达;SUMF1基因的表达模式则差别较大,未呈现明显规律性。AD和G88品系小菜蛾从初孵幼虫起被转移至萝卜子叶上饲养,与取食人工饲料相比幼虫存活率下降、发育历期延长、蛹重降低;幼虫中肠的GSS1和GSS2表达水平显著下降,AD品系的SUMF1a基因在幼虫中肠的表达亦显著下降。本研究通过探究饲料品系小菜蛾转食寄主植物后适合度与GSS和SUMF1基因表达水平的关系,揭示了硫苷代谢相关基因的表达水平很可能受到植物因子调控,并与人工饲料品系小菜蛾对寄主植物的适应性密切相关。 Glucosinolate sulfatase(GSS)and sulfatase modifying factor 1(SUMF1)are crucial for the catabolism of Plutella xylostella on the defensive glucosinolates in the cruciferous host plants.However,little information is available on their roles in the adaptation of the strain of P.xylostella raised from an artificial diet when changed to be fed on its natural host plant.The expression patterns of GSSs and SUMF1s at different developmental stages of two artificial diet strains of P.xylostella(i.e.,AD and G88)were determined.It was found that the expressions of GSSs were similar between the two strains,with abundant GSS1 and GSS2 expressions at the 3 rd and 4 th-instar stages,but no apparent patterns observed for SUMF1s.After the newly hatched larvae of AD and G88 were transferred onto the cotyledons of radish plants,the larval survival rates became lower,with longer larval developmental time and lower pupal weight,than their counterparts fed on the original artificial diet.The expression levels of GSS1 and GSS2 in the larval midguts grown on the radish cotyledons decreased significantly;but,that of SUMF1a,only in the midguts of AD strain.It suggested that the expressions of glucosinolate catabolism-related genes in P.xylostella were possibly regulated by the factor(s)in the host plant and closely associated with the adaptability of the insects upon a shifted feeding from a formulated diet to a natural host plant.
作者 董玉红 陈玮 郑玲 荆晓东 周立 张玲玲 李晓桐 何玮毅 DONG Yu-hong;CHEN Wei;ZHENG Ling;JING Xiao-dong;ZHOU Li;ZHANG Ling-ling;LI Xiao-tong;HE Wei-yi(State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops,Institute of Applied Ecology/Fujian Agriculture and Forestry University,Fuzhou,Fujian 350002,China;Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops,Ministry of Agriculture,Fuzhou,Fujian 350002,China;Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests/Fujian Agriculture and Forestry University,Fuzhou,Fujian 350002,China)
出处 《福建农业学报》 CAS 北大核心 2018年第1期54-60,共7页 Fujian Journal of Agricultural Sciences
基金 国家重点研发计划(2017YFD0200400) 福建省自然科学基金项目(2014J01086) 福建农林大学"校杰出青年科研人才"项目(xjq201403)
关键词 小菜蛾 硫代葡萄糖苷硫酸酯酶 硫酸酯酶修饰因子 人工饲料品系 转寄主 Plutella xylostella glucosinolate sulfatase sulfatase modifying factor 1 artificial diet strain host shift
作者简介 董玉红(1990-),女,硕士,主要从事昆虫与寄主互作研究(E-mail:550462218@qq.com);通讯作者:何玮毅(1982-),男,博士,副教授,主要从事昆虫与寄主互作研究(E-mail:wy.he@fafu.edu.cn)
  • 相关文献

参考文献1

二级参考文献59

  • 1Agrawal, A.A. and Kurashige, N.S. (2003) A role for isoth- iocyanates in plant resistance against the specialist herbi- vore Pieris rapae. Journal of Chemical Ecology, 29, 1403- 1415.
  • 2Barth, C. and Jander, G. (2006) Arabidopsis myrosinases TGG1 and TGG2 have redundant function in glucosinolate break- down and insect defense. Plant Journal, 46, 549-562.
  • 3Beekwilder, J., van Leeuwen, W., van Dam, N.M., Bertossi, M., Grandi, V., Mizzi, L., Soloviev, M., Szabados, L., Molthoff, J.W., Schipper, B., Verbocht, H., De Vos, R.C., Morandini, P., Aarts, M.G. and Bovy, A. (2008) The impact of the absence of aliphatic glucosinolates on insect herbivory inArabidopsis. PLoS One, 3, e2068.
  • 4Bones, A.M. and Rossiter, J.T. (1996) The myrosinase- glucosinolate system, its organisation and biochemistry. Phys- iol Plant, 97, 194-208.
  • 5Bones, A.M. and Rossiter, J.T. (2006) The enzymic and chem- ically induced decomposition of glucosinolates. Phytochem- istry, 67, 1053-1067.
  • 6Brantl, S. (2002) Antisense-RNA regulation and RNA interference. Biochim et Biophys Acta, 1575, 15-25.
  • 7Bric, A., Miething, C., Bialucha, C.U., Scuoppo, C., Zender, L., Krasnitz, A., Xuan, Z., Zuber, J., Wiglet, M., Hicks, J., Mccombie, R.W., Hemann, M.T., Hannon, G.J., Powers, S. and Lowe, S.W. (2009) Functional identification of tumor- suppressor genes through an in vivo RNA interference screen in a mouse lymphoma model. Cancer Cell, 16, 324-335.
  • 8Bridges, M., Jones, A.M., Bones, A.M., Hodgson, C., Cole, R., Bartlet, E., Wallsgrove, R., Karapapa, V.K., Watts, N. and Rossiter, J.T. (2002) Spatial organization of the glucosinolate- myrosinase system in Brassica specialist aphids is similar to that of the host plant. The Royal Society Proceedings B: Biological Sciences, 269, 187-191.
  • 9Burow, M., Muller, R., Gershenzon, J. and Wittstock, U. (2006) Altered glucosinolate hydrolysis in genetically engineered Arabidopsis thaliana and its influence on the larval develop- ment of Spodoptera littoralis. Journal of Chemical Ecology, 32, 2333-2349.
  • 10Charleston, D.S. and Kfir, R. (2000) The possibility of using Indian mustard, Brassica juncea, as a trap crop for the dia- mondback moth, Plutella xylostella, in South Africa. Crop Protection, 19, 455-460.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部