期刊文献+

弹性力学问题的加权Nitsche间断伽辽金有限元法 被引量:1

Weighted Nitsche Discontinuous Galerkin Finite Element Method of Elasticity Problems
在线阅读 下载PDF
导出
摘要 结合传统间断伽辽金有限元法和加权Nitsche法,将内界面上的通量计算由传统的算术平均改进为加权平均,推导了弹性力学问题的加权Nitsche间断伽辽金有限元法公式,并给出了界面稳定系数的取值公式。数值试验表明:随着单元尺寸的逐步减少,对于均质和非均质材料问题,加权Nitsche间断伽辽金有限元法的解逐步收敛于精确解。尤其是对于非均质材料问题,其稳定系数取值比传统方法更加合理和稳定,且可以避免由于稳定系数过大引起的数值不稳定问题。 By combining the traditional discontinuous Galerkin finite element method with the weighted Nistche method,a weighted Nistche discontinuous Galerkin finite element method was developed for elasticity problems. In this method,the traditional arithmetic flux average on interface was replaced by the weighted average,and the formula to compute the interface stability parameter was given. The numerical tests show that the solution of weighted Nistche discontinuous Galerkin finite element method converges to exact solution with the refinement of element size for both homogeneous and heterogeneous material problems. Especially for the heterogeneous material problem,the stability parameter is more reasonable and stable than traditional method,which can avoid the unstable numerical problem resulting from the excessively large stability parameter.
出处 《河南科技大学学报(自然科学版)》 CAS 北大核心 2018年第3期83-88,共6页 Journal of Henan University of Science And Technology:Natural Science
基金 国家自然科学基金项目(51679077) 中央高校基本科研业务费专项基金项目(2016B06414)
关键词 间断伽辽金有限元法 加权Nitsche法 稳定系数 非均质材料 discontinuous Galerkin finite element method weighted Nitsche method stability parameter heterogeneous material
作者简介 王明威(1993-),男,河南驻马店人,硕士生;;张健飞(1977-),男,江苏海门人,副教授,博士,硕士生导师,主要研究方向为计算力学、高性能计算和工程结构安全性分析及评价等.
  • 相关文献

参考文献4

二级参考文献40

  • 1卓家寿 姜弘道.带有夹层岩基的三维弹塑性分析[J].华东水利学报,1979,(2):1-22.
  • 2邵炜,清华大学学报,1999年,39卷,2期,34页
  • 3Desai C S,Int J Numer Method Geomech,1984年,8卷,1期,19页
  • 4卓家寿,华东水利学院学报,1979年,2期,1页
  • 5HUJHES T J R,BROOKS A.A multidimensional upwind scheme with no crosswind diffusion.finite element methods for convection dominated flows[R].ASME,New York,1979.
  • 6HUGHES T J R.Recent progress in the development and understanding of SUPG methods with special reference to the compressible Euler and Navier-Stokes equations[J].International Journal for Numerical Methods in Fluids,1987,7:1261-1275.
  • 7DONEA J.A Taylor-Galerkin method for convective transport problems[J].International Journal for Numerical Methods in Engineering,1984,20:101-120.
  • 8DONEA J,QUARTAPELLE L,SELMIN V.An analysis of time discretization in the finite element solution of hyperbolic problems[J].Journal of Computational Physics,1987,70:463-499.
  • 9COCKBURN B,HOU S,SHU C W.TVD Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws iv:The multidimensional case[J].Math.Comp.,1990,54:545-581.
  • 10COCKBURN B,LIN S Y,SHU C W.TVD Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws iii:One dimensional systems[J].J.Comput.Phys.,1989,84:90 113.

共引文献47

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部