期刊文献+

基于物联网的农业墒情监测系统的设计与实现 被引量:9

DESIGN AND IMPLEMENTATION OF AGRICULTURAL SOIL MOISTURE MONITORING SYSTEM BASED ON THE INTERNET OF THINGS
在线阅读 下载PDF
导出
摘要 针对现有农业生产过程信息化程度不高的问题,设计一个能对农作物生长全过程进行实时监测的农业墒情监测系统,该监测系统包括前端信息采集站和后台处理软件两个部分。其中采集站能将感知层传感器采集到的数据通过GPRS无线通信技术传回后台,后台软件可以对数据进行持久化的存储和有效的分析,进而指导农业生产。为了保证所采集数据的准确性,减少异常值对后期数据分析与处理的影响,以大气温度传感器为例,采用Kalman滤波算法对其采集到的数据进行校正,分别将大气温度传感器直接采集到的数据与经Kalman算法校正后的数据同高精度标准温度测量仪测量的结果进行对比,发现后者的测量值更接近于标准传感器,且误差较小。 In view of the low degree of informatization in the existing agricultural production process,this paper designed an agricultural soil moisture monitoring system which can monitor the whole process of crop growth in real time.The monitoring system included two parts:front-end information collection station and background processing software.The collecting station sent the data collected by the sensor of the perceptual layer back to the backend via the GPRS wireless communication technology.The backend software stored and analyzed the data persistently and then guided the agricultural production.The atmospheric temperature sensor was taken as an example.In order to ensure the accuracy of the collected data and reduce the influence of outliers on the later data analysis and processing,Kalman filtering algorithm was used to correct the data collected.The data collected directly from the atmospheric temperature sensor were compared with the data measured by Kalman algorithm and the results of the high precision standard temperature measuring instrument.The results showed that the latter's measurements were closer to standard sensors with less error.
作者 金文 姚凯学 Jin Wen;Yao Kaixue(College of Computer Science and Technology,Guizhou University,Guiyang 550025,Guizhou,China)
出处 《计算机应用与软件》 北大核心 2018年第3期84-88,204,共6页 Computer Applications and Software
关键词 农业墒情采集 Kalman滤波算法 SPRINGMVC Agricultural soil moisture collection Kalman filtering algorithm SpringMVC
作者简介 金文,硕士生,主研领域:物联网技术,嵌入式技术。;姚凯学,教授
  • 相关文献

参考文献4

二级参考文献19

共引文献40

同被引文献67

引证文献9

二级引证文献62

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部