期刊文献+

Chemical stability, thermal behavior, and shelf life assessment of extruded modified double-base propellants 被引量:4

Chemical stability, thermal behavior, and shelf life assessment of extruded modified double-base propellants
在线阅读 下载PDF
导出
摘要 Double base propellant suffers from lack of chemical stability; this could result in self ignition during storing. Modified double base(MDB) propellant based on stoichiometric binary mixture of oxidizermetal fuel(Ammonium perchlorate/Aluminum), and energetic nitramines(HMX) offered enhanced thrust as well as combustion characteristics. This study is devoted to evaluate the impact of such energetic additives on thermal behavior, chemical stability, and shelf life. Extruded MDB formulations were manufactured by extrusion process. Artificial aging at 80℃ for 28 days was conducted. Shelf life assessment was performed using Van't Hoff's equation. Quantification of evolved NOxgases with aging time was performed using quantitative stability tests. MDB formulation based on HMX demonstrated extended service life of 16 years compared with(AP/Al)-MDB which demonstrated 9 years. This finding was ascribed to the reactivity of AP with nitroglycerin with the formation of perchloric acid. Thermal behavior of aged MDB, exhibited an increase in heat released with time; this was ascribed to the autocatalytic thermal degradation during artificial aging. The increase in released heat by 31% was found to be equivalent to evolved NOx gases of 6.2 cm^3/5 g and 2.5 cm^3/1 g for Bergmann-Junk test, and Vacuum stability test respectively. This manuscript shaded the light on a novel approach to quantify evolved NOx gases to heat released with aging time. MDB based on HMX offered balanced ballistic performance,chemical stability, and service life. Double base propellant suffers from lack of chemical stability; this could result in self ignition during storing. Modified double base(MDB) propellant based on stoichiometric binary mixture of oxidizermetal fuel(Ammonium perchlorate/Aluminum), and energetic nitramines(HMX) offered enhanced thrust as well as combustion characteristics. This study is devoted to evaluate the impact of such energetic additives on thermal behavior, chemical stability, and shelf life. Extruded MDB formulations were manufactured by extrusion process. Artificial aging at 80℃ for 28 days was conducted. Shelf life assessment was performed using Van't Hoff's equation. Quantification of evolved NOxgases with aging time was performed using quantitative stability tests. MDB formulation based on HMX demonstrated extended service life of 16 years compared with(AP/Al)-MDB which demonstrated 9 years. This finding was ascribed to the reactivity of AP with nitroglycerin with the formation of perchloric acid. Thermal behavior of aged MDB, exhibited an increase in heat released with time; this was ascribed to the autocatalytic thermal degradation during artificial aging. The increase in released heat by 31% was found to be equivalent to evolved NOx gases of 6.2 cm^3/5 g and 2.5 cm^3/1 g for Bergmann-Junk test, and Vacuum stability test respectively. This manuscript shaded the light on a novel approach to quantify evolved NOx gases to heat released with aging time. MDB based on HMX offered balanced ballistic performance,chemical stability, and service life.
出处 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2018年第1期70-76,共7页 Defence Technology
关键词 Double-base Chemical stability Thermal behavior Artificial AGING SHELF life ASSESSMENT Double-base Chemical stability Thermal behavior Artificial aging Shelf life assessment
作者简介 Corresponding author:Sherif Elbasuney,E-mail addresses:s.elbasuney@mtc.edu.eg,sherif_basuney2000@yahoo.com
  • 相关文献

参考文献2

共引文献3

同被引文献33

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部