期刊文献+

基于多网络数据协同矩阵分解预测蛋白质功能 被引量:1

Protein Function Prediction Based on Multiple Networks Collaborative Matrix Factorization
在线阅读 下载PDF
导出
摘要 准确预测蛋白质功能是生物信息学的核心任务之一,也是人工智能在生物数据分析中的重要应用点之一.高通量技术的广泛应用产生了大量的生物分子功能关联网络,整合这些网络可更为全面地分析理解蛋白质功能机理,提升蛋白质功能预测精度.已有多种基于数据整合的蛋白质功能预测方法,但它们通常难以应用到较大功能标签空间,未利用标签间关联性和差异性整合多个网络.提出一种基于多网络数据协同矩阵分解的蛋白质功能预测方法(ProCMF).该方法首先利用非负矩阵分解将蛋白质-功能标签关联矩阵分解为2个低秩矩阵,挖掘蛋白质与标签之间的潜在关联.其次,为利用标签间关联关系和多种蛋白质特征数据,ProCMF分别基于上述2个低秩矩阵定义平滑正则性,约束指导低秩矩阵的协同分解.为了差异性地集成多个网络,ProCMF对不同的网络设置不同的权重.最后ProCMF将上述目标统一到一个目标方程中,并用一种交替迭代的方法分别优化求解低秩矩阵和网络权重.在酵母菌、人类和老鼠3个模式物种的多网络数据集上的实验结果表明:ProCMF获得了较其他相关算法更好的预测性能,ProCMF能有效地处理大量的功能标签和区分性地整合多个网络. Accurately and automatically predicting biological functions of proteins is one of the fundamental tasks in bioinformatics,and it is also one of the key applications of artificial intelligence in biological data analysis.The wide application of high throughput technologies produces various functional association networks of molecules.Integrating these networks contributes to more comprehensive view for understanding the functional mechanism of proteins and to improve the performance of protein function prediction.However,existing network integration based solutions cannot apply to a large number of functional labels,ignore the correlation between labels,or cannot differentially integrate multiple networks.This paper proposes a protein function prediction approach based on multiple networks collaborative matrix factorization(ProCMF).To explore the latent relationship between proteins and between labels,ProCMF firstly applies nonnegative matrix factorization to factorize the protein label association matrix into two low rank matrices.To employ the correlation between labels and to guide the collaborative factorization with proteomic data,it defines two smoothness terms on these two low rank matrices.To differentially integrate these networks,ProCMF sets different weights to them.In the end,ProCMF combines these goals into a unified objective function and introduces an alternative optimization technique to jointly optimize the low rank matrices and weights.Experimental results on three model species(yeast,human and mouse)with multiple functional networks show that ProCMF outperforms other related competitive methods.ProCMF can effectively and efficiently handle massive labels and differentially integrate multiple networks.
作者 余国先 王可尧 傅广垣 王峻 曾安 Yu Guoxian;Wang Keyao;Fu Guangyuan;Wang Jun;Zeng An(College of Computer and Information Science, Southwest University, Chongqing 400715;School of Computers, Guangdong University of Technology, Guangzhou 510006)
出处 《计算机研究与发展》 EI CSCD 北大核心 2017年第12期2931-2944,共14页 Journal of Computer Research and Development
基金 国家自然科学基金项目(61402378 61772143) 重庆市自然科学基金项目(cstc2016jcyjA0351)~~
关键词 蛋白质功能预测 功能关联网络 网络集成 非负矩阵分解 协同分解 protein function prediction functional association network network integration nonnegative matrix factorization collaborative factorization
作者简介 gxyu@swu.edu.cn.Yu Guoxian, born in 1985. Associate professor. Member of CCF. His main research interests include machine learning, data mining and bioinformatics.;Wang Keyao, born in 1994. Master candidate. Student member of CCF. His main research interests include machine learning and bioinformatics (keyaowang@email.swu.edu.cn).;Fu Guangyuan, born in 1993. Master. Student member of CCF. His main research interests include machine learning and bioinformatics (fugy@email.swu.edu.cn).;通信作者:王峻(kingjun@swu.edu.cn).Wang Jun, born in 1983. Associate professor. Member of CCF. Her main research interests include data mining and bioinformatics.;Zeng An, born in 1978. Professor. Member of CCF. Her main research interests include artificial intelligence, machinelearning and big data (zengan2010@126.com).
  • 相关文献

参考文献5

二级参考文献42

  • 1高磊,李霞,郭政,朱明珠,李彦辉,饶绍奇.结合蛋白质互作与基因表达谱信息大范围预测蛋白质的精细功能[J].中国科学(C辑),2006,36(5):441-450. 被引量:8
  • 2Tanay A, Sharan R, Shamir R. Biclustering algorithms: A survey [J]. IEEE Trans on Computational Biology and Bioinformatics, 2004, 1(1) : 24-45.
  • 3Kemal E, Mehmet D, Onur K, et al A comparative analysis of hiclustering algorithms for gene expression data [J]. Briefings in Bioinformatics, 2013, 14(3) : 279-292.
  • 4Inderjit S D, Mallela S, Modha D S. Information-theoretic co clustering [C] //Proc of the 9th ACM SIGKDD. New York: ACM, 2003:89-98.
  • 5Inderjit S D. Co-clustering documents and words using bipartite spectral graph partitioning [C] //Proc of the 7th ACM SIGKDD. New York: ACM; 2001:269-274.
  • 6Li Tao, Ding Chris. Non Negative Matrix Factorizations for Clustering: A Survey [M]//Data Clustering: Algorithms and Applications. London: Chapman & Hall/CRC, 2013: 149- 176.
  • 7Long Bo, Zhang Zhongfei, Yu P S. Co-clustering by block value decomposition [C] //Proc of the 11th ACM SIGKDD. New York: ACM, 2005 : 635-640.
  • 8Tjhi W C, Chen Lihui, Minimum sum-squared residue for fuzzy co-clustering[J]. Intelligent Data Analysis, 2006, 10 (3) : 237-249.
  • 9Li Zhao, Wu Xindong. Weighted nonnegative matrix trifactorization for co-clustering [C]//Proc of the 23rd IEEE Int Conf on Tools with Artificial Intelligence. Piscataway, NJ: IEEE, 2011:811-816.
  • 10Shang Fanhua, Jiao Licheng, Wang Fei. Graph dual regularization non negative matrix factorization for co clustering [J]. Pattern Recognition, 2002, 45(6): 2237- 2250.

共引文献56

同被引文献3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部