期刊文献+

基于Kinect的虚拟健身跑锻炼系统 被引量:5

Virtual Running Exercise System Based on Kinect
在线阅读 下载PDF
导出
摘要 健身跑是体育运动中最常用的锻炼方式,不恰当的跑步方式,不仅达不到理想的健身效果,而且很容易对身体特别是膝盖造成伤害。针对目前跑步系统缺乏科学指导和全程监测,本文提出了一个基于Kinect的虚拟健身跑锻炼系统。在动作识别方面,通过角度特征和关节点相对位置对Kinect采集的跑步动作信息进行降维,并分割出跑步动作元,利用动作元的曲线特征和分类模型匹配,进行跑步动作识别,同时对跑步姿态进行科学指导。在运动建模方面,分析用户心率和跑步强度的关系,构建用户的健身跑运动模型,并建立个性化科学跑步运动方案,使心率始终处在安全有效的心率区间内。实验结果表明,该系统具有较强的实用性和可行性,能够为用户进行安全、有效地健身跑锻炼提供科学的技术支持。 Fitness running is a common exercise in sports.Due to the improper running form,it is not only hard to reach the ideal fitness result,but also easy to harm the body seriously,especially the knee.To address the problems of lacking scientific guidance and monitoring in current running systems,this paper proposed a virtual running exercise system based on Kinect.In the action recognition,the dimension of running data collected from Kinect is reduced according to the angle characteristics and the relative position of human joints,and running action units are divided from motion features set.Then all kinds of running actions are recognized by matching with curve characteristics of action units and classification models.In addition,scientific guidance about their running poses is given to users while exercise.In the motion modeling,we analyze the relationship between the heart rate and running intensity,and build the fitness running model and the individualized scientific running exercise scheme,making the heart rate always in the safe and effective range.The experiment results show that our system is practical and feasible to provide a scientific method for safe and effective fitness running to users.
作者 黄东晋 姚院秋 丁友东 WEN Tang HUANG Dongjin;YAO Yuanqiu;DING Youdong(Shanghai Film Academy, Shanghai University, Shanghai 200072, China;Shanghai Engineering Research Center of Motion Picture Special Effects, Shanghai 200072, China;Department of Creative Technology, University of Bournemouth, Fern Barrow Poole BH12 5BB, UK)
出处 《图学学报》 CSCD 北大核心 2017年第5期789-795,共7页 Journal of Graphics
基金 国家自然科学基金项目(61402278) 上海市自然科学基金项目(14ZR1415800) 上海市科委科技攻关项目(16511101302) 上海大学电影学高峰学科项目
关键词 体感交互 健身跑 动作识别 运动建模 somatosensory interaction fitness running action recognition motion modeling
作者简介 黄东晋(1982–),男,浙江温州人,讲师,博士。主要研究方向为虚拟现实技术、计算机图形学等。E-mail:djhuang@shu.edu.cn
  • 相关文献

参考文献4

二级参考文献89

  • 1贺新武,田坤,宋文民.对当今中长跑以“速度训练为核心”的再认识[J].中国体育科技,1999,35(10):10-12. 被引量:15
  • 2基尔斯滕,翁玉泉.增进健康论[J].体育科学,1998,18(4):38-40. 被引量:15
  • 3纪庆革,潘志庚,梅林,杨世琦,李祥晨.团体操虚拟编排和演练原型系统[J].计算机辅助设计与图形学学报,2004,16(9):1185-1190. 被引量:19
  • 4Zhang D, Gatica-Perez D, Bengio S, et al. Modeling individual group actions in meetings: a two-layer HMM framework[A]. In: Proceedings of IEEE CVPR Workshop on Detection and Recognition of Events in Video[ C ] , Washington, DC, USA,2004 : 117-125.
  • 5Olivier N, Horovitz E, Garg A. Layered representations for human activity recognition [ A ] . In: Proceedings of IEEE International Conference on Muhimodal Interfaces [ C ] , Pittsburgh, PA, USA, 2002 : 3-8.
  • 6Luo Y, Wu T D, Hwang J N. Object-based analysis and interpretation of human motion in sports video sequences by dynamic Bayesian networks [ J ] . Computer Vision and Image Understanding, 2003, 92(2-3) : 196-216.
  • 7Du Y T, Chen F, Xu W L, et al. Recognizing interaction activities using dynamic Bayesian network [ A ] . In: Proceedings of International Conference on Pattern Recognition [ C ], New York, USA. 2006: 618-621.
  • 8Buxton H, Gong S G. Advanced visual surveillance using Bayesian networks [ A ]. In: Proceedings of International Conference on Computer Vision [ C ] , Boston, MA, USA, 1995 : 111 - 123.
  • 9Oliver N, Horvitz E. A comparison of HMMs and dynamic Bayesian networks for recognizing office activities [ A ]. In: Proceedings of lOth International Conference on User Modeling [ C ] , Edinburgh, UK, 2005 : |99-209.
  • 10Sminchisescu C, Kanaujia A, Metaxas D. Conditional models for contextual human motion recognition [ J ]. Computer Vision and Image Understanding, 2006,104 ( 2-3 ) : 210-220.

共引文献80

同被引文献68

引证文献5

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部