期刊文献+

金属有机骨架用于气体存储、吸附分离的研究进展 被引量:13

Progress of metal-organic frameworks for selective gas storage,adsorption and separation
在线阅读 下载PDF
导出
摘要 金属有机骨架(MOFs)由于具有大比表面积、高孔隙率、可调孔径、结构多样、开放的金属位点和化学可修饰性等诸多优点而被广泛用于气体的吸附分离研究。本文对近年来MOFs在气体存储、吸附分离领域的研究进展进行了综述,讨论了不同MOFs对氢气、甲烷的存储性能和存储机理及对二氧化碳、低碳烃等的分离性能和吸附机理,指出MOFs材料的比表面积、孔结构、金属位点、π-π键合作用、可修饰基团等是影响不同MOFs吸附分离过程的重要参数。有目的的功能化改性是提高MOFs材料选择性吸附分离性能的有效方法,但目前仍普遍存在存储吸附性能不够、稳定性不强、成本过高等问题,只有解决这些问题才能使MOFs大量从实验室走向工业化。 Metal-organic frameworks(MOFs)are widely studied in gas adsorption and separation for their inherent advantages,including high specific surface area,high porosity,tunable pore sizes,structural diversity,open metal sites and easy chemical modifications.This review focused on recent research progress of MOFs in the storage of H2and CH4and in the separation of CO2/N2and light hydrocarbons,etc.It is pointed that the properties of gas adsorption and separation in MOFs are affected by various parameters such as specific surface area,porosity,the central metal ions,π-πstacking/interactions,organic ligands,etc.Rational design and functionalization on MOFs are effective methods to improve their adsorption and separation properties.To achieve the practical application of MOFs,more efforts should be taken to improve the stability and reduce the cost.
作者 郑丽君 龚奇菡 李雪静 朱庆云 ZHENG Lijun;GONG Qihan;LI Xuejing;ZHU Qingyun(PetroChina Petrochemical Research Institute,Beijing 102206,China)
出处 《化工进展》 EI CAS CSCD 北大核心 2017年第11期4116-4123,共8页 Chemical Industry and Engineering Progress
关键词 金属有机骨架 吸附 分离 二氧化碳 低碳烃 metal-organic frameworks adsorption separation hydrogen carbon dioxide light hydrocarbons
作者简介 第一作者及联系人:郑丽君(1987—),女,硕士,工程师,主要从事炼化战略信息研究及新材料跟踪研究。E-mail:zhenglijun@petrochina.com.cn。
  • 相关文献

参考文献4

二级参考文献250

  • 1胡天友,印敬.高含硫天然气有机硫脱除技术的研究[J].石油与天然气化工,2007,36(6):470-474. 被引量:28
  • 2Zomoza B, Tellez C, Coronas J, et al. Metal organic framework based mixed matrix membranes: An increasingly important field of research with a large application potential[J]. Microporous Mesoporous Mater., 2013, 166: 67-78.
  • 3Robeson L M. Correlation of separation factor versus permeability for polymeric membranes[J]. J. Membr. Sci., 1991, 62 (2): 165-185.
  • 4Yaghi O M, O'Keeffe M, Oekwig N W, et al. Reticular synthesis and the design of new materials[J]. Nature, 2003, 423 (6941): 705-714.
  • 5Li J R, Sculley J, Zhou H C. Metal-organic frameworks for separations[J]. Chem. Rev., 2011, 112 (2): 869-932.
  • 6Zhang R, Ji S, Wang N, et al. Coordination-driven in situ self-assembly strategy for the preparation of metal-organic framework hybrid membranes[J]. Angew. Chem. Int. Ed., 2014, 53 (37): 9775-9779.
  • 7Shah M, McCarthy M C, Sachdeva S, et al. Current status of metal-organic framework membranes for gas separations: Promises and challenges[J]. Ind. Eng. Chem. Res., 2012, 51 (5): 2179-2199.
  • 8Jeazet H B T, Staudt C, Janiak C. Metal-organic frameworks in mixed-matrix membranes for gas separation[J]. Dalton Trans., 2012, 41 (46): 14003-14027.
  • 9Keskin S, Sholl D S. Assessment of a metal-organic framework membrane for gas separations using atomically detailed calculations: CO2, CH4, N2, HE mixtures in MOF-5 [J]. Ind. Eng. Chem. Res., 2008, 48 (2): 914-922.
  • 10Keskin S, Liu J, Johnson J K, et al. Atomically detailed models of gas mixture diffusion through Cu-BTC membranes[J]. Microporous MesoporousMater., 2009, 125 (1): 101-106.

共引文献45

同被引文献120

引证文献13

二级引证文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部