期刊文献+

Kinetic modeling of copper bioleaching from low-grade ore from the Shahrbabak Copper Complex

Kinetic modeling of copper bioleaching from low-grade ore from the Shahrbabak Copper Complex
在线阅读 下载PDF
导出
摘要 The copper recovery from low-grade copper sulfide ore was investigated using microbial leaching. Several parameters substantially affect the bioleaching of copper; among them, pulp density and nutrient media were selected for investigation. The optimum conditions for copper recovery were a pulp density of 5 g/mL, a mixed-mineral salt medium of Acidithiobacillus thiooxidans(70vol%) and Acidithiobacillus ferrooxidans(30vol%), and 10vol% of inoculum. Under these conditions, the maximum bioleaching capacity of the medium for copper recovery was determined to be approximately 99%. The effect of pulp density on the kinetics of the bioleaching process was surveyed using both da Silva's method and constrained multilinear regression analysis. The kinetics of copper dissolution followed the shrinking core model, and the process was diffusion controlled at a pulp density of 5 g/mL. Nevertheless, at higher pulp densities, the process was controlled by chemical reaction. The copper recovery from low-grade copper sulfide ore was investigated using microbial leaching. Several parameters substantially affect the bioleaching of copper; among them, pulp density and nutrient media were selected for investigation. The optimum conditions for copper recovery were a pulp density of 5 g/mL, a mixed-mineral salt medium of Acidithiobacillus thiooxidans(70vol%) and Acidithiobacillus ferrooxidans(30vol%), and 10vol% of inoculum. Under these conditions, the maximum bioleaching capacity of the medium for copper recovery was determined to be approximately 99%. The effect of pulp density on the kinetics of the bioleaching process was surveyed using both da Silva's method and constrained multilinear regression analysis. The kinetics of copper dissolution followed the shrinking core model, and the process was diffusion controlled at a pulp density of 5 g/mL. Nevertheless, at higher pulp densities, the process was controlled by chemical reaction.
出处 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2017年第6期611-620,共10页 矿物冶金与材料学报(英文版)
基金 financially supported by the National Iranian Copper Industry Co.
关键词 BIOLEACHING KINETICS modeling COPPER MESOPHILIC BACTERIA bioleaching kinetics modeling copper mesophilic bacteria
作者简介 Corresponding author: Saeed Sheibani,E-mail: ssheibani@ut.ac.ir
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部