期刊文献+

轻度认知障碍患者脑皮层多特征分析与分类 被引量:2

Analysis and classification on multiple cortical features of patients with mild cognitive impairment
在线阅读 下载PDF
导出
摘要 揭示稳定型轻度认知障碍患者、转化型轻度认知障碍患者与健康正常人之间的脑结构及其形态变化差异,以区分3组人群.首先,选择73例健康正常人、46例稳定型MCI患者和40例转化型MCI患者,采集基线期以及1年和2年时间节点的脑结构磁共振图像;然后,应用Freesurfer软件计算皮层厚度、灰质体积、表面积和平均曲率等脑皮层形态结构特征,并分别利用T检验方法、稀疏约束降维法和递归特征消去法,选择重要特征;最后,利用线性支持向量机对3组人群进行分类,分析具有强分类能力的重要脑区及其分布.结果表明,递归特征消去法的分类性能最优,稀疏约束降维法次之,T检验最差;4种皮层特征融合,尤其是基线与纵向变化特征融合,可显著提高分类性能.脑皮层结构特征及其随时间的变化信息,能被有效地应用于稳定型和转化型MCI患者的自动分类. The difference of the brain structures and morphological changes among the patients with stable mild cognitive impairment(sMCI),the patients with converted mild cognitive impairment(cMCI)and the normal control(NC)was revealed and three groups were discriminated.First,73,NC,46sMCI and40cMCI were selected,and the baseline,1-year and2-year longitudinal follow-up magnetic resonance(M R)images were acquired.Secondly,the FreeSurfer software was used to calculate the cortical morphological features including the cortical thickness,the gray matter volume,the surface area,and the mean curvature.The T-test method,the sparsity-constrained dimensionality reduction(SCDR)method and the recursive feature elimination(RFE)method were adopted to extract the salient features in discrimination.Finally,the linear support vector machine(LSVM)was applied to classify these three groups,and the brain regions with strong capability in the classification and their distributions were analyzed.The experimental results show that the RFE method exhibits the best performance in classification,followed by the SCDR method,and the T-test method is least.The combination of four types of cortical features,especially the combination of the baseline feature with the longitudinal change feature,can improve the performance of the classifier.Therefore,the cortical morphological features and their changes with time can be applied for automatic classification between the patients with sMCI and the patients with cMCI.
作者 郭圣文 吴聪玲 赖春任 吴宇鹏 江行军 赵地 Guo Shengwen;Wu Congling;Lai Chunren;Wu Yupeng;Jiang Xingjun;Zhao Di(School of Material Science and Engineering,South China University of Technology,Guangzhou 510006,China)
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2017年第3期483-489,共7页 Journal of Southeast University:Natural Science Edition
基金 国家自然科学基金资助项目(31371008) 广东省科技计划资助项目(2015A02024006) 广州市产学研协同创新重大专项资助项目(201604020170)
关键词 轻度认知障碍 转化 脑皮层特征 特征选择 支持向量机 纵向变化 mild cognitive impairment conversion cortical feature feature selection support vector machine longitudinal change
作者简介 郭圣文(1971—),男,博士,教授,shwguo@scut.edu.cn.
  • 相关文献

参考文献1

二级参考文献13

  • 1Petersen R C, Roberts R O, Knopman D S, et al. Mild cognitive impairment: ten years later [J]. Archives of Neurology, 2009, 66(12): 1447-1455.
  • 2Jack C R, Albert M S, Knopman D S, et al. Introduction to the recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease [J]. Alzheimer’s & Dementia, 2011, 7(3): 257-262.
  • 3Ashburner J, Friston K J. Voxel-based morphometry—the methods [J]. NeuroImage, 2000, 11(6): 805-821.
  • 4Schroeter M L, Stein T, Maslowski N, et al. Neural correlates of Alzheimer’s disease and mild cognitive impairment: a systematic and quantitative meta-analysis involving 1351 patients [J]. NeuroImage, 2009, 47(4):1196-1206.
  • 5Yang J, Pan P L, Song W, et al. Voxelwise meta-analysis of gray matter anomalies in Alzheimer’s disease and mild cognitive impairment using anatomic likelihood estimation [J]. Journal of the Neurological Sciences, 2012, 316(1):21-29.
  • 6Mesrob L, Magnin B, Colliot O, et al. Identification of atrophy patterns in Alzheimer’s disease based on SVM feature selection and anatomical parcellation [J]. Medical Imaging and Augmented Reality, 2008,5128: 124-132.
  • 7Magnin B, Mesrob L, Kinkingnéhun S, et al. Support vector machine-based classification of Alzheimer’s disease from whole-brain anatomical MRI [J]. Neuroradiology, 2009, 51(2): 73-83.
  • 8Kl?ppel S, Stonnington C M, Chu C, et al. Automatic classification of MR scans in Alzheimer’s disease [J]. Brain, 2008, 131(3): 681-689.
  • 9Guyon I, Weston J, Barnhill S, et al. Gene selection for cancer classification using support vector machines [J]. Machine Learning, 2002, 46(1/2/3): 389-422.
  • 10The Alzheimer’s Disease Neuroimaging Initiative(ADNI). Sharing Alzheimer’s research data with the world [EB/OL].[2014-09-20] http://adni.loni.usc.edu/.

共引文献3

同被引文献7

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部