期刊文献+

两两NQD列的极限定理 被引量:2

Some Limit Theorems for Pairwise NQD Random Sequences
在线阅读 下载PDF
导出
摘要 本文主要研究了两两NQD列的完全收敛性和强大数定律.文中给出了两两NQD列的定义和推广的Kolmogorov型不等式,并利用推广的Kolmogorov型不等式,得到了两两NQD列的完全收敛性定理.本文构造了两个不增函数,利用不增函数的性质,得到了两两NQD列的强大数定律.本文得到的强大数定律与独立随机变量情况下的强大数定律相类似,进而推广了前人的研究成果. In this paper, we study the complete convergence properties and strong laws of large numbers for pairwise NQD random sequences. We present the de nition of pairwise NQD random sequences and the Kolmogorov inequality to the case of pairwise NQD random sequences. Based on the Kolmogorov inequality, we obtain complete convergence propertiesof pairwise NQD random sequences. We construct two non-increasing functions based on theproperties of non-increasing function, and obtain some strong laws of large number for pairwise NQD random sequences, which is similar to independent random variable sequences. The theorem obtained in this paper thus inclines to extend the related results presented in previous literatures.
作者 宋明珠 吴永锋 SONG Ming-zhu;WU Yong-feng(School of Mathematics and Computer Science, Tongling University, Tongling, Anhui 244000)
出处 《工程数学学报》 CSCD 北大核心 2017年第1期38-46,共9页 Chinese Journal of Engineering Mathematics
基金 安徽省高校自然科学研究重点项目(KJ2014A255 KJ2016A705) 安徽省高校优秀青年人才支持计划重点项目(gxyq ZD2016317)~~
关键词 两两NQD列 完全收敛性 强大数定律 极限定理 pairwise NQD random sequences complete convergence properties strong laws of large numbers limit theorems
作者简介 宋明珠(1979年11月生),女,讲师. 研究方向:随机过程的极限性质.
  • 相关文献

参考文献6

二级参考文献22

  • 1万成高.两两NQD列的大数定律和完全收敛性[J].应用数学学报,2005,28(2):253-261. 被引量:44
  • 2王汉兴,戴永隆.马氏环境中马氏链的Poisson极限律[J].数学学报(中文版),1997,40(2):265-270. 被引量:32
  • 3Lehmann, E.L., Some concepts of dependence, Ann. Math. Statist., 37(1966), 1137-1153.
  • 4Matula, P., A note on the almost sure convergence of sums of negatively dependent random variables, Statist. Probab. Left., 15(3)(1992), 209-213.
  • 5Chandra, T.K., Uniform integrability in the Cesaro sence and the weak law of large numbers, Sankhya: the Indian Tournal of Statistics, 51(Series A)(1989), 309-317.
  • 6Csorgo, S., Tandori, K. & Totik, V., On the strong law of large numbers for pairwise independent random variables, Acta. Math. Hungarica, 42(1983), 319-330.
  • 7Jamison, B., Orey, S. & Prutt, W.E., Convergence of weighted averages of independent random variables, Z. Wahrch. Verw. Gebiet, 4(1965), 40-44.
  • 8Cogburn R.The ergodic theory of Markov chains in random environments[J].Z.Wahrsch.Verw.Gebiete,1993,66(2):109-128.
  • 9Cogburn R.Markov chains in random environments:the case of Markovian environment[J].Ann Prob.,1980,8(3):908-916.
  • 10Cogburn R.On the central limit theorem for Markov chains in random environments[] ].Ann Prob.,1991,19(2):587-604.

共引文献157

同被引文献12

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部