期刊文献+

一种基于传感器与用户行为数据分析的移动学习场景感知分类方法 被引量:11

A Sensor and User Behavior Data Analysis Based Method of Mobile Learning Situation Perception
在线阅读 下载PDF
导出
摘要 随着智能手机和移动互联网的普及,使用智能移动终端进行学习的用户也逐渐增多,移动学习在数字教育领域占据着越来越重要的地位.移动学习的有效性体现在情境感知的能力,即能够感知不同学习情境并提供相应合理的学习内容.因而,移动学习中的情境感知技术已经成为一个研究热点.学习场景的感知是移动学习情境感知的重点,但是由于移动学习的动态性和复杂性,准确的场景感知具有一定的难度.基于实际的移动学习环境,提出了一种根据传感器与学习操作行为对学习场景进行感知分类的方法,处理并分析了由移动学习客户端采集到的传感器数据和学习操作行为日志数据,对比了以传感器数据特征值与学习操作行为特征值共同作为输入特征值的多种场景感知分类算法.结果表明:对比仅使用传感器数据作为分类算法输入特征值的结果,结合学习操作行为日志和传感器数据一起作为学习场景分类感知的依据,可以显著提高移动学习场景的感知分类效果. As the popularity of the smart phones and mobile technologies,more and more people beginto use smartphones to learn and get new knowledge.Mobile learning has played a critical role in thefield of education for a few years.The effectiveness of mobile learning reflects in the ability ofperceiving different learning contexts and then provides matched learning resource.Context awarenesshas become a research hotspot,but the most important is learning situation perception.We canprovide proper learning resources according to the specific learning situation.Because of the mobilityand complexity of mobile learning,it5s difficult to perceive learning situation.The thesis proposes amethod to perceive learning situations by combining sensor data and learning operation data andconducts some experiments.It chooses and calculates some sensor data eigenvalues and learningoperation index eigenvalues as the inputs of the classification algorithms?the learning situations thatstudents provide as training set data.The result shows that combining sensor data and learningoperation data to perceive learning situations can improve the accuracy of the learning situationperception,which proves the feasibility and effectiveness of learning situation perception based onsensor data and learning operations.
作者 叶舒雁 张未展 齐天亮 李静 郑庆华 Ye Shuyan;Zhang Weizhan;Qi Tianliang;Li Jing;Zheng Qinghua(Department of Computer Science and Technology,Xian Jiaotong University,Xian 710049;Shaanxi Province Key Laboratory of Satellite and Terrestrial Netxvork Technology{Xi an Jiaotong University),Xi’an710049))
出处 《计算机研究与发展》 EI CSCD 北大核心 2016年第12期2721-2728,共8页 Journal of Computer Research and Development
基金 国家重点研发计划项目(2016YFB1000903) 国家自然科学基金项目(61472317 61428206 61472315 61532015 61532004) 教育部创新团队发展计划资助项目(IRT13035) 陕西省科技统筹创新工程重点实验室项目(2013SZS05-Z01)~~
关键词 移动学习 移动传感器 学习操作 学习场景感知 场景分类 mobile learning mobile sensor learning operation learning context perception context classification
作者简介 Ye Shuyan, born in 1991. Master candidate.Her main research interest is multimediasystems for e-learning.;Zhang Weizhan, born in 1977. Associateprofessor and PhD supervisor. His mainresearch interests include multimedia systemsfor e-learning, peer-to-peer computing,analysis and application of big data andwireless networks.;Qi Tianliang, born in 1993. Mastercandidate. His main research interestsinclude personalization service in e-learning,analysis and application of big data;Li Jin g, born in 1993. Master. Her mainresearchinterest is multimedia systems fore-learning.;Zheng Qinghua,born in 1969. Professor,PhD supervisor, and vice-president of Xi’anJiao tong University. His main researchinterests include multimedia distanceeducation, computer network security,intelligent e-learning theory and algorithm.
  • 相关文献

参考文献3

二级参考文献30

  • 1Cullar D, Estrin D, Strvastava M. Overview of sensor networks. IEEE Computer, 2004, 37(8): 41-49.
  • 2Madden S, Franklin M J, Hellerstein J M, Hong W. The design of an acquisitional query processor for sensor networks//Proceedings of the 2003 ACM SIGMOD International Conference on Management of Data. San Diego, California, 2003: 491-502.
  • 3Manihi A, Nath S, Gibbons P B. Tributaries and deltas: Efficient and robust aggregation in sensor network streams// Proceedings of the 2005 ACM SIGMOD International Conference on Management of Data. Baltimore, Maryland, 2005: 287-298.
  • 4Silberstein A, Munagala K, Yang J. Energy-efficient monitoring of extreme values in sensor networks//Proceedings of the 2006 ACM SIGMOD International Conference on Management of Data. Chicago, Illinois, 2006:169-180.
  • 5Considine J, Li F, Kollios G, Byers J. Approximate aggregation techniques for sensor databases//Proceedings of the 20th International Conference on Data Engineering. Boston, MA, 2004:449-460.
  • 6Deshpande A, Guestrin C, Madden S, Hellerstein J M, Hong W. Model-driven data acquisition in sensor networks// Proceedings of the 30th International Conference on Very Large Data Bases. Toronto, Canada, 2004:588- 599.
  • 7Deshpande A, Guestrin C, Hong W, Madden S. Exploiting correlated attributes in acquisitional query processing//Proceedings of the 21st International Conference on Data Engineering. Tokyo, Japan, 2005: 143-154.
  • 8Chu D, Deshpand A, Hellerstein J M, Hong W. Approximate data collection in sensor networks using probabilistic models//Proceedings of the 22nd International Conference on Data Engineering. Atlanta, 2006:48.
  • 9Zhu X, Zhang S, Zhang J, Zhang C. Cost-sensitive imputing missing values with ordering//Proceedings of the 22nd AAAI Conference on Artificial Intelligence. Vancouver, Canada, 2007:1922 -1923.
  • 10Setiawan N A, Venkatachalam P A, Hani A F M. Missing attribute values prediction based on artificial neural network and rough set theory//Proceedings of the 2008 International Conference on BioMedical Engineering and Informatics. Sanya, Hainan, China, 2008, 1:306-310.

共引文献74

同被引文献70

引证文献11

二级引证文献151

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部