期刊文献+

Electrochemical hydriding and thermal dehydriding properties of nanostructured hydrogen storage MgNi26 alloy 被引量:2

纳米结构贮氢合金MgNi26的电化学氢化和热脱氢性能(英文)
在线阅读 下载PDF
导出
摘要 The MgNi26 alloy was prepared by three different methods of gravity casting (GC), mechanical alloying (MA) and rapid solidification (RS). All samples were electrochemically hydrided in a 6 mol/L KOH solution at 80 °C for 240 min. The structures and phase compositions of the alloys were studied using optical microscopy and scanning electron microscopy, energy dispersive spectrometry and X-ray diffraction. A temperature-programmed desorption technique was used to measure the absorbed hydrogen and study the dehydriding process. The content of hydrogen absorbed by the MgNi26-MA (approximately 1.3%, mass fraction) was 30 times higher than that of the MgNi26-GC. The MgNi26-RS sample absorbed only 0.1% of hydrogen. The lowest temperature for hydrogen evolution was exhibited by the MgNi26-MA. Compared with pure commercial MgH2, the decomposition temperature was reduced by more than 200 °C. The favourable phase and structural composition of the MgNi26-MA sample were the reasons for the best hydriding and dehydriding properties. 采用重力铸造(GC)、机械合金化(MA)和快速凝固(RS)3种工艺制备MgNi26合金。将所有样品在浓度为6mol/L的KOH溶液中于80°C进行电化学氢化处理240min。采用光学显微镜、扫描电镜、能量分散光谱及X射线衍射技术研究合金的组织和相组成。利用程序控温技术分析吸氢和脱氢过程。机械合金化法制备的MgNi26-MA合金样品所吸附的氢含量(约1.3%,质量分数)比重力铸造法制备的MgNi26-GC合金样品所吸附的氢含量高30倍。快速凝固法制备的MgNi26-RS合金样品所吸附的氢含量仅为0.1%。MgNi26-MA合金显示出最低的析氢温度。与工业纯MgH2相比,MgNi26-MA合金的分解温度至少降低了200°C。MgNi26-MA合金优异的氢化和脱氢性能归因于其有利的相组成和组织结构。
出处 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第8期2136-2143,共8页 中国有色金属学报(英文版)
基金 the Czech Science Foundation (project No. P108/12/G043) for the financial support of this research
关键词 magnesium alloy hydrogen storage electrochemical hydriding mechanical alloying melt spinning 镁合金 贮氢 电化学氢化 机械合金化 熔融纺丝法
作者简介 Corresponding author: V. KNOTEK; Tel: +420-220444055; Fax: +420-220444400; E-mail: Vitezslav.Knotek@vscht.cz
  • 相关文献

参考文献3

二级参考文献45

  • 1ROSS D K. Hydrogen storage: The major technological barrier to the development of hydrogen fuel cell cars [J]. Vacuum, 2006, 80: 1084-1089.
  • 2WU Y, LOTOTSKY M V, SOLBERG J K, YARTYS V A, HAN W, ZHOU S X. Microstructure and novel hydrogen storage properties of melt-spun Mg-Ni-Mm alloys [J]. Journal of Alloys and Compounds, 2009, 477(1): 262-266.
  • 3OUYANG L Z, YANG X S, DONG H W, ZHU M. Structure and hydrogen storage properties of Mg3Pr and Mg3PrNi0.] alloys [J]. Scripta Materialia, 2009, 61(4): 339-342.
  • 4OUYANG L Z, DONG H W, ZHU M. Mg3Mm compound based hydrogen storage materials [J]. Journal of Alloys and Compounds, 2007, 446-447: 124-128.
  • 5JAIN I P, LAL C, JAIN A. Hydrogen storage in Mg: A most promising material [J]. International Journal of Hydrogen Energy, 2010, 35(10): 5133-5144.
  • 6VOJTICH D, SUSTARSIC B, MORI'ANIKOVii, M,MICHALCOVA. A, VESELA A. Electrochemical hydriding as method for hydrogen storage? [J]. International Journal of Hydrogen Energy, 2009, 34(17): 7239-7245.
  • 7SONG M Y. Effects of mechanical alloying on the hydrogen storage characteristics of Mg-xwt%Ni (x-0, 5, 10, 25 and 55) mixtures [J]. International Journal of Hydrogen Energy, 1995, 20(3): 221 227.
  • 8BERLOUIS L E A, CABRERA E, HALL-BARIENTOS E, HALL P J, DODD S, MORRIS S, IMAM M A. A thermal analysis investigation of the hydriding properties of nanocrystalline Mg Ni based alloys prepared by high energy ball milling [J]. Journal of Alloys and Compounds, 2000, 305(1 2): 82-89.
  • 9ZHANG J, ZHOU D W, HE L P, PENG P, LIU J S. First-principles investigation of Mg2Ni phase and high/low temperature Mg2NiH4 complex hydrides [J]. Joumal of Physics and Chemistry of Solids, 2009, 70(1): 32-39.
  • 10CALE W P', TOTEMEIER T C. Smithells metals reterence book [M]. Amsterdam: Elsevier Publishers, 2004.

共引文献9

同被引文献10

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部