期刊文献+

不同尺寸的悬架石墨烯纳米带热传导性质的实验测量

Experimental Measurement on Thermal Transport Properties of Suspended Graphene Nanoribbons with Different Sizes
在线阅读 下载PDF
导出
摘要 实验测量了悬架的单层石墨烯(Single-Layer Graphene,SLG)和具有不同尺寸的石墨烯纳米带(Graphene Nanoribbons,GNRs)的热传导性质。GNRs悬架于Si O2/Si基底的槽上,悬架的GNRs的长度等于槽的宽度。采用一维稳态法测量了不同条件下GNRs和SLG的热导率k。使用激光切割技术将SLG剪裁成具有不同尺寸的GNRs。与SLG相比,GNRs的k高很多,而且随着GNRs宽度的减小而增加,宽度越小,k的增加越明显。另一个明显的现象是k随着温度升高先增加后减小,在50?C附近出现峰值。这种现象可能是由边界散射、点缺陷散射、晶界声子散射,以及声子传递中的反转散射的综合效应引起的。SLG经过第4次切割后,在50?C条件下k达到了最大值2 450.55 W/(m·K)。研究结果显示,窄的GNRs具有更好的热性质。 The thermal transport properties of suspended single-layer graphene (SLG) and graphene nanoribbons (GNRs) with different sizes were measured experimentally. The GNRs was suspended on the groove of SiO2/Si substrate, and the length of suspending GNRs was equal to the groove width. A one-dimensional steady-state method was applied to measure the thermal conductivity, k, of GNRs and SLG at different conditions. The SLG was cut into GNRs with different width by using laser cutting technology. k of the GNRs was much higher than that of SLG and increase with decrease of GNRs width, and the increase in k appeared significant when the width decreases greatly. Another anomalous property was that k increased firstly and then decrease with an increase in temperature, and a peak value appeared at around 50 ±C. This phenomenon may be due to the competition effects of boundary scattering, point defect scattering,grain-boundary phonon scattering, and umklapp scattering in phonon transport. After the SLG was cut for the fourth times, a maximum k value of 2 450.55 W/(m ¢ K) is obtained under the condition of 50 ±C. The study result also showed that the GNRs with small width exhibits better thermal properties.
作者 陈立飞 赵攀峰 谢华清 于伟 CHEN Lifei;ZHAO Panfeng;XIE Huaqing;YU Wei(School of Environmental and Materials Engineering, Shanghai Polytechnic University,Shanghai 201209, P. R. China)
出处 《上海第二工业大学学报》 2016年第3期169-174,共6页 Journal of Shanghai Polytechnic University
基金 国家自然科学基金青年基金(No.51306109) 国家自然科学基金重大项目(No.5159092) 东方学者计划项目资助
关键词 热导率 单层石墨烯 石墨烯纳米带 thermal conductivity single-layer grapheme (SLG) graphene nanoribbons (GNRs)
作者简介 通信作者: 陈立飞(1973–), 女, 辽宁省锦州人, 教授, 硕士生导师, 博士, 主要研究方向为微纳尺度传热及热功能材料。电子邮箱lfchen@sspu.edu.cn。
  • 相关文献

参考文献19

  • 1MINGO N, BROIDO D A. Carbon nanotube ballistic thermalconductance and its limits [J]. Phys Rev Lett, 2005,95(9): 096105.
  • 2SHI L P, XIONG S J. Phonon thermal conductance of disorderedgraphene strips with armchair edges [J]. Phys LettA, 2009, 373(5): 563-569.
  • 3NIKA D L, POKATILOV E P, ASKEROV A S, et al.Phonon thermal conduction in graphene: Role of umklappand edge roughness scattering [J]. Phys Rev B, 2009,79(15): 155413.
  • 4ZHANG H S, GUO Z X, GONG X G, et al. Thermal conductivityof sawtooth-like graphene nanoribbons: A moleculardynamicsstudy [J]. J Appl Phys, 2012, 112: 123508.
  • 5HU J N, SCHIFFLI S, VALLABHANENI A, et al. Tuningthe thermal conductivity of graphene nanoribbons by edgepassivation and isotope engineering: A molecular dynamicsstudy [J]. Appl Phys Lett, 2010, 97(13): 133107.
  • 6NG T Y, YEO J J, LIU Z S. A molecular dynamics study ofthe thermal conductivity of graphene nanoribbons containingdispersed Stone–Thrower–Wales defects [J]. Carbon,2012, 50(13): 4887-4893.
  • 7CHIEN S K, YANG Y T, CHEN C K. Influence of hydrogenfunctionalization on thermal conductivity of graphene:Nonequilibrium molecular dynamics simulations [J]. ApplPhys Lett, 2011, 98(3): 033107.
  • 8MORTAZAVI B, RAJABPOUR A, AHZI S, et al. Nitrogendoping and curvature effects on thermal conductivityof graphene: A non-equilibrium molecular dynamics study[J]. Solid State Comm, 2012, 152(4): 261-264.
  • 9VERMA R, BHATTACHARYA S, MAHAPATRA S. Aphysics-based flexural phonon-dependent thermal conductivitymodel for single layer graphene [J]. Semicond SciTechnol, 2012, 28(1): 015009.
  • 10SAITO K, NAKAMURA J, NATORI A. Ballistic thermalconductance of a graphene sheet [J]. Phys Rev B, 2007,76(11): 115409.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部