期刊文献+

面向科技情报的互联网信息源自动发现技术 被引量:2

Internet Information Sources Automatic Discovery Technology for Scientific and Technological Intelligence
在线阅读 下载PDF
导出
摘要 自动获取高质量互联网信息源是科技情报工作的一项基础性研究内容。以网站/网页类信息源和Twitter信息源为研究对象,基于共引关系以及关注关系和文本内容,分别提出了两类信息源的自动发现方法,并面向科技情报领域进行了实验。对信息源自动发现技术应用形式进行了研究,分析了科技情报工作对信息源服务的具体要求,提出了3类应用场景。 It is a basic work to discover high quality internet information sources automatically for scientific and technological intelligence.The technology of website/webpage information sources discovery was presented based on the co-citation relationship,and the technology of Twitter information sources discovery was presented based on the following relationship and content analysis.Then,the application forms of automatic discovery of information sources were discussed.Three kinds of application scenarios were presented based on the analysis of the requirements of scientific and technological intelligence.
出处 《大数据》 2015年第4期48-56,共9页 Big Data Research
基金 国家社会科学基金资助项目(No.4CTQ012)~~
关键词 科技情报 互联网信息源 TWITTER 共引 社会网络分析 scientific and technological intelligence internet information source Twitter co-citation social network analysis
  • 相关文献

参考文献22

  • 1WENG J,LIM E P,JIANG J.TwitteRank:finding topic-sensitive influential twitterers. Proceedings of the 3rd ACM International Conference on Web Search and Data Mining . 2010
  • 2Clauset A,Newman MEJ,Moore C.Finding community structure in very large networks. Physics Review E . 2004
  • 3Gao H,Niu H B,Luo W.Internet information source discovery based on multi-seeds cocitation. Proceedings of International Conference on Security Pattern Analysis and Cybernetics (SPAC)2014 . 2014
  • 4http://www.internetlivestats.com/totalnumber-ofwebsites/ .
  • 5Sergey Brin,Lawrence Page.The anatomy of a large-scale hypertextual Web search engine[J]. Computer Networks and ISDN Systems . 1998 (1)
  • 6Jeffrey Dean,Monika R Henzinger.??Finding related pages in the World Wide Web(J)Computer Networks . 1999 (11)
  • 7https://en.wikipedia.org/wiki/Twitter .
  • 8Wouter D N,Andrej M,Vladimir B.Exploratory Social Network Analysis with Pajek. . 2011
  • 9http://www.similarsitesearch.com/about.html .
  • 10YAN Z,ZHOU J.User recommendation with tensor factorization in social networks. 2012 IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP) . 2012

二级参考文献102

  • 1Kang J H, Lerman K, Plangprasopchok A. Analyzing Microblogs with affinity propagation [C] //Proc of the 1st KDD Workshop on Social Media Analytic. New York: ACM, 2010:67-70.
  • 2Ramage D, Dumais S, Liebling D. Characterizing microblogs with topic models [C] //Proc of Int AAAI Conf on Weblogs and Social Media. Menlo Park, CA: AAAI, 2010:130-137.
  • 3Xu R, Wunsch D. Survey of clustering algorithms [J]. IEEE Trans on Neural Networks, 2005, 16(3): 645-678.
  • 4Deerwester S, Dumais S, Landauer T, et al. Indexing by latent semantic analysis [J]. Journal of the American Society of Information Science, 1990, 41(6): 391-407.
  • 5Landauer T K, Foltz P W, Laham D. Introduction to Latent Semantic Analysis [J]. Discourse Processes, 1998, 25 (2) 259-284.
  • 6Griffiths T, Steyvers M. Probabilistic topic models [G] // Latent Semantic Analysis: A Road to Meaning. Hillsdale, NJ: Laurence Erlbaum, 2006.
  • 7Hofmann T. Probabilistic latent semantic indexing [C] // Proc of the 22nd Annual Int ACM SIGIR Conf on Research and Development in Information Retrieval. New York: ACM, 1999:50-57.
  • 8Salton G, McGill M. Introduction to Modern Information Retrieval [M]. New York: McGraw-Hill, 1983.
  • 9Blei D M, Ng A Y, Jordan M I. Latent Dirichlet Allocation [J]. The Journal of Machine Learning Research, 2003, 3: 993-1022.
  • 10Wei X, Croft W B. LDA-based document models for ad hoc retrieval [C] //Proc of the 29th Annual Int ACM SIGIR Conf on Research and Development in Information Retrieval. New York:ACM, 2006:178-185.

共引文献226

同被引文献17

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部