期刊文献+

无线网络用户信息资源快速识别仿真研究 被引量:1

Research on Fast Recognition and Simulation of User Information Resources in Wireless Network
在线阅读 下载PDF
导出
摘要 对无线网络用户资源的快速识别,能够有效提高网络用户信息的整合效率。对用户信息资源的识别,需要通过遗忘函数进行信息资源加权修正,根据修正结果对相似度进行计算,完成用户信息资源的快速识别。传统方法通过决策树对用户信息资源进行多次过滤,对网络信息的决策树进行更新,但忽略了对信息资源的加权修正。提出无线网络用户信息资源快速识别方法。将项目评分相似度和项目类别相似度结合,通过遗忘函数进行加权修正,根据加权修正后得到的评分值对相似度进行计算,反映了用户基本的偏好,提高了快速识别结果的精准度。通过因子分析法对每个项目进行聚类,降低项目向量维数,完成无线网络用户信息资源的快速识别。仿真结果表明,采用所提方法对无线网络用户信息资源进行快速识别时,得到的识别结果精准度较高、识别质量好。 The fast recognition of user resources in wireless network can effectively improve the integration efficiency of network user information. The traditional method updates the decision tree of network information, but ignores the weighted modification for information resources. Therefore, we focus on a method for fast identifying user information resources in wireless network. By combining the similarity of item rating with the similarity of item category, the weighted correction was carried out by forgetting function. Moreover, we calculated the similarity based on the score value obtained after the weighted modification, which reflected the fundamental preference of users and improved the accuracy of fast recognition results. Through factor analysis, we clustered each item to reduce the number of dimensions of item vector. Thus, we could complete the fast identification of user information resources in wireless network. Simulation results show that the proposed method has high accuracy and quality of recognition.
作者 梁婷婷 李春青 LIANG Ting - ting, LI Chun - qing(Lushan College, Guangxi University of Science and Technology Liuzhou Guangxi 545000, China)
出处 《计算机仿真》 北大核心 2018年第10期415-418,471,共5页 Computer Simulation
基金 广西重点培育学科(应用数学)建设项目(SXZD2016001)
关键词 无线网络 用户信息 快速识别 Wireless network User information Fast recognition
作者简介 梁婷婷(1983-),女(壮族),广西崇左人,硕士,副教授,主要研究方向:信息检索。;李春青(1983-),女(汉族),广西南宁人,硕士,讲师,主要研究方向:数据挖掘。
  • 相关文献

参考文献9

二级参考文献65

  • 1乔登科,柳厅文,孙永,郭莉.一种获得有限自动机状态间关系的高效算法[J].计算机研究与发展,2012,49(S2):138-144. 被引量:2
  • 2金玮,张克君,曲文龙,杨炳儒.分布式Web用户兴趣迁移模式挖掘研究[J].计算机工程,2006,32(24):44-47. 被引量:1
  • 3邢春晓,高凤荣,战思南,周立柱.适应用户兴趣变化的协同过滤推荐算法[J].计算机研究与发展,2007,44(2):296-301. 被引量:149
  • 4刘平峰,聂规划,陈冬林.电子商务推荐系统研究综述[J].情报杂志,2007,26(9):46-50. 被引量:36
  • 5Xu Ruzhi, Wang Shuaiqiang, Zheng Xuwei, et al. Dis- tributed collaborative filtering with singular ratings for large scale recommendation [ J]. The Journal of Systems and Software, 2014, 95(9) : 231-241.
  • 6Zhang Jing, Peng Qinke, Sun Shiquan, et al. Collabora- tive filtering recommendation algorithm based on user preference derived from item domain features[ J ]. Physi- ca A: Statistical Mechanics and Its Applications, 2014,396(2) : 66-76.
  • 7Yang Xiwang, Guo Yang, Liu Yong. Bayesian-inference based recommendation in online social networks [ J ]. IEEE Transactions on Parallel and Distributed Systems, 2013, 24(4) : 642-651.
  • 8Boulkrinat S, Hadjali A, Mokhtari A. Towards recom- mender systems based on a fuzzy preference aggregation [ C ]///Proceeding of the Eighth Conference of the Europe- an Society for Fuzzy Logic and Technology ( EUSFLAT- 13). Milan: Is. n. 1, 2013: 146-153.
  • 9Son L H. HU-FCF: a hybrid user-based fuzzy collabora- tive filtering method in recommender systems[ J]. Expert Systems with Applications, 2014, 41 ( 15 ) : 6861-6870.
  • 10FERREIRA A,FIGUEIREDO M.Unsupervisedjoint feature discretization and selection [J].Lec-ture Notes in Computer Science,2011,6669:200-207.

共引文献122

同被引文献15

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部