期刊文献+

面向新浪微博的意见领袖挖掘算法 被引量:1

Opinion Leader Mining Algorithms on Sina Weibo
在线阅读 下载PDF
导出
摘要 当前的影响力分析算法大多基于网络拓扑结构或用户交互信息,然而单一方面的方法会使挖掘结果出现较大的偏差,目前缺乏全面准确的影响力挖掘方法。本文通过对传统PageRank算法进行扩展,提出一种面向新浪微博的基于用户交互度连接属性的TCRank算法;其次设计了3种微博意见领袖特征指标,并对其加权求和用于意见领袖候选集的精化操作;同时提出一种基于卷积神经网络模型的情感支持度的意见领袖抽取算法,对意见领袖候选集进行最终排名。最后,通过实验验证所提出算法的有效性。 The current influence analysis algorithms are mostly based on network topology structure or user interaction information. However,a single method will lead to a large deviation in mining results. At present,there is no comprehensive and accurate influence mining method. Therefore,by extending the traditional PageRank algorithm,a new TCRank algorithm based on user interaction connection attribute is proposed for Sina Weibo. Secondly,three kinds of micro-blog opinion leader characteristics are designed,and their weighted summation is used to refine the candidate set of opinion leaders. At the same time,an opinion leader extraction algorithm based on emotional support of convolution neural network model is proposed to rank the candidate set of opinion leaders. Finally,the effectiveness of the proposed algorithm is verified by experiments.
作者 刘俊杰 马畅 邵维龙 韩东红 夏利 LIU Jun-jie;MA Chang;SHAO Wei-long;HAN Dong-hong;XIA Li(Department of Information Engineering and Automation,Shanxi Institute of Technology,Yangquan 045000,China;School of Computer Science and Engineering,Northeast University,Shenyang 110819,China)
出处 《计算机与现代化》 2018年第9期80-86,共7页 Computer and Modernization
基金 国家自然科学基金资助面上项目(61173029 61672144)
关键词 新浪微博 意见领袖 PAGERANK 特征指标 卷积神经网络 Sina Weibo opinion leader PageRank characteristic indexes convolution neural network
作者简介 刘俊杰(1968-),女,山西阳泉人,山西工程技术学院信息工程与自动化系实验师,学士,研究方向:社交媒体分析,数据挖掘;;马畅(1992-),男,东北大学计算机科学与工程学院硕士研究生,研究方向:数据挖掘,大数据分析;;邵维龙(1991-),男,硕士研究生,研究方向:数据挖掘,社交网络分析;;韩东红(1968-),女,副教授,博士,研究方向:数据流管理,不确定数据管理,数据挖掘,社交媒体分析;;夏利(1962-),女,副教授,博士,研究方向:社交网络分析。
  • 相关文献

参考文献4

二级参考文献47

  • 1樊兴华,孙茂松.一种高性能的两类中文文本分类方法[J].计算机学报,2006,29(1):124-131. 被引量:70
  • 2ZHOU Tao,FU Zhongqian,WANG Binghong.Epidemic dynamics on complex networks[J].Progress in Natural Science:Materials International,2006,16(5):452-457. 被引量:36
  • 3Lazarsfield P et al. The People's Choice. New York= Columbia University Press, 1948.
  • 4Weimann Gabriel, Tustin Deon Harold, van Vuuren I)aan, Joubert J P R. Looking for opinion leaders Traditional vs. modern measures in traditional societies. International Journal of Public ()pinion Research, 2007, 19(2).- 173 190.
  • 5Matsumura Naohiro, Ohsawa Influence diffusion model in Transactions of the Japanese genee, 2002, 17(3): 259 267 Yukio, Ishizuka Mitsuru text based communication Society for Artificial Intelli.
  • 6Zhou Hengmin, Zeng Daniel, Zhang Changli. Finding leaders from opinion networks//Proceedings of the 2009 IEEE International Conference on Intelligence and Security Informatics(ISI09). DallasTX, USA, 2009 266 268.
  • 7Zhang Jun, Ackerman Mark S, Adamic Lada. Expertise net works in online communities: Structure and algorithms// Proceedings of the 16th International World Wide Web Con [erenee Committee(IW3C2). Ban[f, Canada, 2007:221 230.
  • 8Song Xiaodan, Chi Yun, Hino Koji, Belle Tseng. Identifying opinion leaders in the blogosphere//Proeeedings of the 16th ACM Conference on Information and Knowledge Manage ment(CIKM07). New York, USA, 2007:971-974.
  • 9Zhai Zhongwu, Xu Hua, Jia Peifa. Identifying opinion lead ers in BBS//Proceedings of the IEEE/WIC/ACM Interna tional Conference on Web Intelligence and Intelligent Agent Technology(WI IAT'08). Sydney, NSW, Australia, 2008: 398 401.
  • 10Fan Xing-Hua, Nie Jian-Yun. lank distribution dependency model for document retrieval. Journal of Information Computational Science, 2009, 6(3): 1553-1564.

共引文献180

同被引文献39

引证文献1

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部