摘要
为了解决移动社交网络社区发现不精确的问题,引入移动用户的上下文信息,研究了采用移动用户社交网络的介数来剔除移动社交网络中不稳定的边,利用GN算法快速形成社区核后,采用节点与社区核之间的相似度来获得重叠社区的划分结果。实验结果证明,提出的算法能够提高社区发现的算法精度。
In order to deal with the inaccurate community detection for mobile social networks, the context information of mobile users is introduced. The unstable edge in mobile social networks is eliminated by using the betweenness of mobile social networks. After the community kernel fast formed by GN algorithm, the similarity between the node and the community kernel is used to obtain the final overlapping community structure. The experimental results show that the proposed algorithm can improve the accuracy of community detection.
作者
洪小龙
HONG Xiaolong(GCI Science & Technology Co.,Ltd.,Guangzhou 510310,China)
出处
《移动通信》
2018年第8期33-37,共5页
Mobile Communications
关键词
GN算法
社区核
时空相似度
重叠社区
GN algorithm
community kernel
space-time similarity
overlapping community
作者简介
洪小龙:学士毕业于井冈山学院,现任职于广州杰赛科技股份有限公司,从事移动用户社交行为分析、关联分析等领域的研究工作。